Potential Vorticity Mixing and Rapid Intensification in the Numerically Simulated Supertyphoon Haiyan (2013)

The inner-core dynamics of Supertyphoon Haiyan (2013) undergoing rapid intensification (RI) are studied with a 2-km-resolution cloud-resolving model simulation. The potential vorticity (PV) field in the simulated storm reveals an elliptical and polygonal-shaped eyewall at the low and middle levels d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the atmospheric sciences 2020-06, Vol.77 (6), p.2067-2090
Hauptverfasser: Tsujino, Satoki, Kuo, Hung-Chi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The inner-core dynamics of Supertyphoon Haiyan (2013) undergoing rapid intensification (RI) are studied with a 2-km-resolution cloud-resolving model simulation. The potential vorticity (PV) field in the simulated storm reveals an elliptical and polygonal-shaped eyewall at the low and middle levels during RI onset. The PV budget analysis confirms the importance of PV mixing at this stage, that is, the asymmetric transport of diabatically generated PV to the storm center from the eyewall and the ejection of PV filaments outside the eyewall. We employ a piecewise PV inversion (PPVI) and an omega equation to interpret the model results in balanced dynamics. The omega equation diagnosis suggests eye dynamical warming is associated with the PV mixing. The PPVI indicates that PV mixing accounts for about 50% of the central pressure fall during RI onset. The decrease of central pressure enhances the boundary layer (BL) inflow. The BL inflow leads to contraction of the radius of the maximum tangential wind (RMW) and the formation of a symmetric convective PV tower inside the RMW. The eye in the later stage of the RI is warmed by the subsidence associated with the convective PV towers. The results suggest that the pressure change associated with PV mixing, the increase of the symmetric BL radial inflow, and the development of a symmetric convective PV tower are the essential collaborating dynamics for RI. An experiment with 500-m resolution shows that the convergence of BL inflow can lead to an updraft magnitude of 20 m s −1 and to a convective PV tower with a peak value of 200 PVU (1 PVU = 10 −6 K kg −1 m 2 s −1 ).
ISSN:0022-4928
1520-0469
DOI:10.1175/JAS-D-19-0219.1