Experimental study of pre-chamber jet ignition in a rapid compression machine and single-cylinder natural gas engine
Pre-chamber jet ignition is a promising combustion technology to achieve fast combustion in natural gas engines. First, the ignition and combustion characteristics of mixtures in a pre-chamber system with different diameter orifices were studied under engine-relevant pressures and temperatures in a...
Gespeichert in:
Veröffentlicht in: | International journal of engine research 2021-04, Vol.22 (4), p.1342-1356 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Pre-chamber jet ignition is a promising combustion technology to achieve fast combustion in natural gas engines. First, the ignition and combustion characteristics of mixtures in a pre-chamber system with different diameter orifices were studied under engine-relevant pressures and temperatures in a rapid compression machine. The tested fuels, CH4/air stoichiometric mixtures, were diluted by different proportions of CO2/N2 to simulate the corresponding exhaust gas recirculation conditions in engines. High-speed photography was applied to visualize the jet ignition and combustion processes. The experimental results revealed that two ignition patterns existed in the pre-chambers depending on the diameter of orifices. Pre-chamber jet flame ignition pattern appeared when the orifice diameter of the pre-chamber exceeded a critical value, which produced jet flame and ignited the mixtures in the main chamber directly. Pre-chamber jet auto-ignition pattern produced jet which promoted the auto-ignition of mixture in the main chamber when the orifice diameter was smaller and presented much shorter combustion durations. Based on the experimental results in the rapid compression machine, a practical pre-chamber system was designed in a single-cylinder natural gas engine to investigate the combustion performance and emission characteristics. The experimental results indicated appropriate 0.8%–1.4% increases of indicated thermal efficiency were achieved by pre-chamber jet ignition due to the higher combustion efficiency and shorter combustion duration compared to conventional spark ignition. Lower total hydrocarbon and CO emissions but higher NOx emissions were produced by pre-chamber jet ignition due to the faster burning velocity and higher combustion temperature. |
---|---|
ISSN: | 1468-0874 2041-3149 |
DOI: | 10.1177/1468087419883783 |