Deep draw induced wrinkling of engineering fabrics
Deep-draw experiments are performed on both glass and carbon fabric both to better understand the origin of wrinkle growth during complex forming experiments and to assess the accuracy, robustness and computational cost of forming simulations of engineering fabrics. During experiments, the shape of...
Gespeichert in:
Veröffentlicht in: | International journal of solids and structures 2021-03, Vol.212, p.220-236 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Deep-draw experiments are performed on both glass and carbon fabric both to better understand the origin of wrinkle growth during complex forming experiments and to assess the accuracy, robustness and computational cost of forming simulations of engineering fabrics. During experiments, the shape of the deformed blanks is digitised using two different non-contact measurement techniques (Structured Light Scanning and Photogrammetry). The resulting digital point clouds permit detailed analysis of wrinkle growth and shows that the simulations perform well in predicting the very different forming behaviours of the two fabrics. The sensitivity of wrinkle formation to initial conditions is demonstrated in both experiments and simulations and the direction of wrinkle growth during the forming process is shown to influence wrinkle draw-in; an observation that could potentially be used to mitigate wrinkle draw-in during actual forming processes. |
---|---|
ISSN: | 0020-7683 1879-2146 |
DOI: | 10.1016/j.ijsolstr.2020.12.003 |