Diophantine triples with largest two elements in common

In this paper we prove that if { a , b , c } is a Diophantine triple with a < b < c , then { a + 1 , b , c } cannot be a Diophantine triple. Moreover, we show that if { a 1 , b , c } and { a 2 , b , c } are Diophantine triples with a 1 < a 2 < b < c < 16 b 3 , then { a 1 , a 2 , b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Periodica mathematica Hungarica 2021-03, Vol.82 (1), p.56-68
Hauptverfasser: Cipu, Mihai, Dujella, Andrej, Fujita, Yasutsugu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we prove that if { a , b , c } is a Diophantine triple with a < b < c , then { a + 1 , b , c } cannot be a Diophantine triple. Moreover, we show that if { a 1 , b , c } and { a 2 , b , c } are Diophantine triples with a 1 < a 2 < b < c < 16 b 3 , then { a 1 , a 2 , b , c } is a Diophantine quadruple. In view of these results, we conjecture that if { a 1 , b , c } and { a 2 , b , c } are Diophantine triples with a 1 < a 2 < b < c , then { a 1 , a 2 , b , c } is a Diophantine quadruple.
ISSN:0031-5303
1588-2829
DOI:10.1007/s10998-020-00331-4