Tuning the Selective Adsorption Site of Biomass on Co3O4 by Ir Single Atoms for Electrosynthesis

The electrosynthesis from 5‐hydroxymethylfurfural (HMF) is considered a green strategy to achieve biomass‐derived high‐value chemicals. As the molecular structure of HMF is relatively complicated, understanding the HMF adsorption/catalysis behavior on electrocatalysts is vital for biomass‐based elec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2021-02, Vol.33 (8), p.n/a
Hauptverfasser: Lu, Yuxuan, Liu, Tianyang, Dong, Chung‐Li, Huang, Yu‐Cheng, Li, Yafei, Chen, Jun, Zou, Yuqin, Wang, Shuangyin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The electrosynthesis from 5‐hydroxymethylfurfural (HMF) is considered a green strategy to achieve biomass‐derived high‐value chemicals. As the molecular structure of HMF is relatively complicated, understanding the HMF adsorption/catalysis behavior on electrocatalysts is vital for biomass‐based electrosynthesis. The electrocatalysis behavior can be modulated by tuning the adsorption energy of the reactive molecules. In this work, the HMF adsorption behavior on spinel oxide, Co3O4 is discovered. Correspondingly, the adsorption energy of HMF on Co3O4 is successfully tuned by decorating with single‐atom Ir. It is observed that compared with bare Co3O4, single‐atom‐Ir‐loaded Co3O4 (Ir‐Co3O4) can enhance adsorption with the CC groups of HMF. The synergetic adsorption can enhance the overall conversion of HMF on electrocatalysts. With the modulated HMF adsorption, the as‐designed Ir‐Co3O4 exhibits a record performance (with an onset potential of 1.15 VRHE) for the electrosynthesis from HMF. Single atoms of Ir are anchored on Co3O4 for efficient electro‐oxidation of 5‐hydroxymethylfurfural (HMF). It is found that an isolated Ir atom can optimize the adsorption configuration of HMF molecules on catalysts and accelerate HMF oxidation.
ISSN:0935-9648
1521-4095
DOI:10.1002/adma.202007056