Numerical Solution of Fractional-Order Fredholm Integrodifferential Equation in the Sense of Atangana–Baleanu Derivative

In the present article, our aim is to approximate the solution of Fredholm-type integrodifferential equation with Atangana–Baleanu fractional derivative in Caputo sense. For this, we propose a method based on Laplace transform and inverse LT. In our numerical scheme, the given equation is transforme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2021-02, Vol.2021, p.1-8
Hauptverfasser: Wang, Jian, Kamran, Jamal, Ayesha, Li, Xuemei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the present article, our aim is to approximate the solution of Fredholm-type integrodifferential equation with Atangana–Baleanu fractional derivative in Caputo sense. For this, we propose a method based on Laplace transform and inverse LT. In our numerical scheme, the given equation is transformed to an algebraic equation by employing the Laplace transform. The reduced equation will be solved in complex plane. Finally, the solution of the given problem is obtained via inverse Laplace transform by representing it as a contour integral. Then, the trapezoidal rule is used to approximate the integral to high accuracy. We have considered linear and nonlinear fractional Fredholm integrodifferential equations to validate our method.
ISSN:1024-123X
1563-5147
DOI:10.1155/2021/6662808