Facile Hydrothermal Procedure for the Synthesis of Sodium Aluminum Silicate Hydrate/Analcime and Analcime for Effective Removal of Manganese(II) Ions From Aqueous Solutions

In this research, sodium aluminum silicate hydrate/analcime composite (abbreviated as S/A) and analcime (abbreviated as A) products were fabricated utilizing the hydrothermal technique in the absence and presence of glutamine (concentration = 0.0435 g/mL) as phase-controlling template, respectively....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of inorganic and organometallic polymers and materials 2021-03, Vol.31 (3), p.1035-1046
Hauptverfasser: Youssef, Hany M., Shah, Reem K., Algethami, Faisal K., Hegazey, R. M., Naglah, Ahmed M., Al-Omar, Mohamed A., Alluhaybi, Ahmad A., Alherbish, Hatim A., Mabrouk, E. M., Abdelrahman, Ehab A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this research, sodium aluminum silicate hydrate/analcime composite (abbreviated as S/A) and analcime (abbreviated as A) products were fabricated utilizing the hydrothermal technique in the absence and presence of glutamine (concentration = 0.0435 g/mL) as phase-controlling template, respectively. Glutamine behaves as a crowning agent and avoids the accretion of particles. Hence, it controlled the morphology, aluminum silicate type, and crystallite size. The patterns of XRD elucidated that the S/A composite and A products exhibit a crystallite size equals 70.36 and 80.24 nm, respectively. Besides, the SEM elucidated that the S/A composite comprised of an irregular and sphere forms with a size of 2.64 µm whereas the A product comprised of a droxtal forms with a size of 7.84 µm. Furthermore, the fabricated products were exploited for removing Mn(II) ions from aqueous solutions. The uptake of Mn(II) ions was constrained by the pseudo-second-order model and Langmuir isotherm. Besides, the uptake of Mn(II) ions was exothermic since the estimations of ∆H° on account of S/A composite and A product were − 52.059 and − 58.878 kJ/mol, respectively. Additionally, the maximum uptake capacity of S/A composite and A product was 75.188 and 60.241 mg/g, respectively. The higher uptake of the S/A composite can be explained by the fact that the S/A composite has a small crystallite size (70.36 nm) and a high surface area (20.26 m 2 /g) compared to the A product. Furthermore, the fabricated products are returnable, stable, effective, and can be reutilized more than once without the concession of their efficacy regarding Mn(II) ions.
ISSN:1574-1443
1574-1451
DOI:10.1007/s10904-020-01699-z