Intergranular passivation of the TiC coating for enhancing corrosion resistance and surface conductivity in stainless-steel bipolar plates
Stainless-steel bipolar plates (BPPs) are of great significance in low-cost, easily processable, lightweight proton exchange membrane fuel cells (PEMFCs) despite the challenge presented by corrosion in protective coatings. Localized corrosion along the grain boundaries in a crystal film is common, b...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2021-05, Vol.56 (14), p.8689-8703 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8703 |
---|---|
container_issue | 14 |
container_start_page | 8689 |
container_title | Journal of materials science |
container_volume | 56 |
creator | Li, Jingling Xu, Zeling Li, Yujian Ma, Xinzhou Mo, Jiamei Weng, Lingyan Liu, Cuiyin |
description | Stainless-steel bipolar plates (BPPs) are of great significance in low-cost, easily processable, lightweight proton exchange membrane fuel cells (PEMFCs) despite the challenge presented by corrosion in protective coatings. Localized corrosion along the grain boundaries in a crystal film is common, but few preventive measures have been developed so far. Thus, we propose a novel strategy using a tantalum (Ta) and carbon (C) co-modification to improve the chemical stability of titanium carbide (TiC)-based coatings (Cr/Ta/TiC/C). During the film growth, the subjacent Ta atoms were thermally diffused throughout the columnar structure of TiC and reacted with the C layer. The reaction product, i.e., TaC, acted as a chemical passivator to the grain boundary. Combined with the C capping layer, these functional layers synergistically suppressed any localized corrosion. Therefore, corrosion current densities within the United States Department of Energy’s technical recommendations were achieved in both potentiostatic and potentiodynamic polarization. Meanwhile, by controlling the Ta metal dispersion, the interfacial contact resistance between the multilayer structure and the carbon paper can be reduced to 7.1 mΩ·cm
−2
at a compaction force of 140 N·cm
−2
. The substantial improvement in the corrosion resistance and conductivity of BPP places our work among the most efficient anticorrosion systems in PEMFC applications reported so far. |
doi_str_mv | 10.1007/s10853-020-05733-w |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2491437236</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A652436883</galeid><sourcerecordid>A652436883</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-bb348d9d10c56f9de29403c5f0125cc35d53f31cd3500da64a028f14c399dc5f3</originalsourceid><addsrcrecordid>eNp9kctuFDEQRS0EEkPgB1hZYsXCofzonu5lNOIxUiQkCGvL40fHUcceXO6E_AJfjSeNhLJBXrh8dW6V7UvIWw7nHGD7ATkMnWQggEG3lZLdPyMb3iqmBpDPyQZACCZUz1-SV4g3AA0TfEN-71P1ZSomLbMp9GgQ452pMSeaA63Xnl7FHbW5SWmiIRfq07VJ9nSyuZSMJ7R4jFib7KlJjuJSgmm1zckttsa7WB9oTLQhMc0ekWH1fqaHeMyPU2dTPb4mL4KZ0b_5u5-RH58-Xu2-sMuvn_e7i0tm1RYqOxykGtzoONiuD6PzYlQgbReAi85a2blOBsmtkx2AM70yIIbAlZXj6Bomz8i7te-x5J-Lx6pv8lJSG6mFGrmSWyH7Rp2v1GRmr2MKuRZj23L-NraH-RCbftF3Qsl-GGQzvH9iaEz1v-pkFkS9__7tKStW1rYPxOKDPpZ4a8qD5qBPgeo1UN0C1Y-B6vtmkqsJG5wmX_7d-z-uP_wLpgs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2491437236</pqid></control><display><type>article</type><title>Intergranular passivation of the TiC coating for enhancing corrosion resistance and surface conductivity in stainless-steel bipolar plates</title><source>SpringerLink Journals - AutoHoldings</source><creator>Li, Jingling ; Xu, Zeling ; Li, Yujian ; Ma, Xinzhou ; Mo, Jiamei ; Weng, Lingyan ; Liu, Cuiyin</creator><creatorcontrib>Li, Jingling ; Xu, Zeling ; Li, Yujian ; Ma, Xinzhou ; Mo, Jiamei ; Weng, Lingyan ; Liu, Cuiyin</creatorcontrib><description>Stainless-steel bipolar plates (BPPs) are of great significance in low-cost, easily processable, lightweight proton exchange membrane fuel cells (PEMFCs) despite the challenge presented by corrosion in protective coatings. Localized corrosion along the grain boundaries in a crystal film is common, but few preventive measures have been developed so far. Thus, we propose a novel strategy using a tantalum (Ta) and carbon (C) co-modification to improve the chemical stability of titanium carbide (TiC)-based coatings (Cr/Ta/TiC/C). During the film growth, the subjacent Ta atoms were thermally diffused throughout the columnar structure of TiC and reacted with the C layer. The reaction product, i.e., TaC, acted as a chemical passivator to the grain boundary. Combined with the C capping layer, these functional layers synergistically suppressed any localized corrosion. Therefore, corrosion current densities within the United States Department of Energy’s technical recommendations were achieved in both potentiostatic and potentiodynamic polarization. Meanwhile, by controlling the Ta metal dispersion, the interfacial contact resistance between the multilayer structure and the carbon paper can be reduced to 7.1 mΩ·cm
−2
at a compaction force of 140 N·cm
−2
. The substantial improvement in the corrosion resistance and conductivity of BPP places our work among the most efficient anticorrosion systems in PEMFC applications reported so far.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-020-05733-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Carbon ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Coatings ; Columnar structure ; Contact resistance ; Corrosion ; Corrosion currents ; Corrosion prevention ; Corrosion resistance ; Crystallography and Scattering Methods ; Diffusion ; Film growth ; Force and energy ; Fuel cell industry ; Grain boundaries ; Hydrogen as fuel ; Intergranular corrosion ; Localized corrosion ; Materials Science ; Metals & Corrosion ; Multilayers ; Plates ; Polymer Sciences ; Protective coatings ; Proton exchange membrane fuel cells ; Reaction products ; Solid Mechanics ; Stainless steels ; Steel ; Tantalum ; Titanium carbide</subject><ispartof>Journal of materials science, 2021-05, Vol.56 (14), p.8689-8703</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-bb348d9d10c56f9de29403c5f0125cc35d53f31cd3500da64a028f14c399dc5f3</citedby><cites>FETCH-LOGICAL-c470t-bb348d9d10c56f9de29403c5f0125cc35d53f31cd3500da64a028f14c399dc5f3</cites><orcidid>0000-0003-0720-9264</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-020-05733-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-020-05733-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Li, Jingling</creatorcontrib><creatorcontrib>Xu, Zeling</creatorcontrib><creatorcontrib>Li, Yujian</creatorcontrib><creatorcontrib>Ma, Xinzhou</creatorcontrib><creatorcontrib>Mo, Jiamei</creatorcontrib><creatorcontrib>Weng, Lingyan</creatorcontrib><creatorcontrib>Liu, Cuiyin</creatorcontrib><title>Intergranular passivation of the TiC coating for enhancing corrosion resistance and surface conductivity in stainless-steel bipolar plates</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Stainless-steel bipolar plates (BPPs) are of great significance in low-cost, easily processable, lightweight proton exchange membrane fuel cells (PEMFCs) despite the challenge presented by corrosion in protective coatings. Localized corrosion along the grain boundaries in a crystal film is common, but few preventive measures have been developed so far. Thus, we propose a novel strategy using a tantalum (Ta) and carbon (C) co-modification to improve the chemical stability of titanium carbide (TiC)-based coatings (Cr/Ta/TiC/C). During the film growth, the subjacent Ta atoms were thermally diffused throughout the columnar structure of TiC and reacted with the C layer. The reaction product, i.e., TaC, acted as a chemical passivator to the grain boundary. Combined with the C capping layer, these functional layers synergistically suppressed any localized corrosion. Therefore, corrosion current densities within the United States Department of Energy’s technical recommendations were achieved in both potentiostatic and potentiodynamic polarization. Meanwhile, by controlling the Ta metal dispersion, the interfacial contact resistance between the multilayer structure and the carbon paper can be reduced to 7.1 mΩ·cm
−2
at a compaction force of 140 N·cm
−2
. The substantial improvement in the corrosion resistance and conductivity of BPP places our work among the most efficient anticorrosion systems in PEMFC applications reported so far.</description><subject>Carbon</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Coatings</subject><subject>Columnar structure</subject><subject>Contact resistance</subject><subject>Corrosion</subject><subject>Corrosion currents</subject><subject>Corrosion prevention</subject><subject>Corrosion resistance</subject><subject>Crystallography and Scattering Methods</subject><subject>Diffusion</subject><subject>Film growth</subject><subject>Force and energy</subject><subject>Fuel cell industry</subject><subject>Grain boundaries</subject><subject>Hydrogen as fuel</subject><subject>Intergranular corrosion</subject><subject>Localized corrosion</subject><subject>Materials Science</subject><subject>Metals & Corrosion</subject><subject>Multilayers</subject><subject>Plates</subject><subject>Polymer Sciences</subject><subject>Protective coatings</subject><subject>Proton exchange membrane fuel cells</subject><subject>Reaction products</subject><subject>Solid Mechanics</subject><subject>Stainless steels</subject><subject>Steel</subject><subject>Tantalum</subject><subject>Titanium carbide</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kctuFDEQRS0EEkPgB1hZYsXCofzonu5lNOIxUiQkCGvL40fHUcceXO6E_AJfjSeNhLJBXrh8dW6V7UvIWw7nHGD7ATkMnWQggEG3lZLdPyMb3iqmBpDPyQZACCZUz1-SV4g3AA0TfEN-71P1ZSomLbMp9GgQ452pMSeaA63Xnl7FHbW5SWmiIRfq07VJ9nSyuZSMJ7R4jFib7KlJjuJSgmm1zckttsa7WB9oTLQhMc0ekWH1fqaHeMyPU2dTPb4mL4KZ0b_5u5-RH58-Xu2-sMuvn_e7i0tm1RYqOxykGtzoONiuD6PzYlQgbReAi85a2blOBsmtkx2AM70yIIbAlZXj6Bomz8i7te-x5J-Lx6pv8lJSG6mFGrmSWyH7Rp2v1GRmr2MKuRZj23L-NraH-RCbftF3Qsl-GGQzvH9iaEz1v-pkFkS9__7tKStW1rYPxOKDPpZ4a8qD5qBPgeo1UN0C1Y-B6vtmkqsJG5wmX_7d-z-uP_wLpgs</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Li, Jingling</creator><creator>Xu, Zeling</creator><creator>Li, Yujian</creator><creator>Ma, Xinzhou</creator><creator>Mo, Jiamei</creator><creator>Weng, Lingyan</creator><creator>Liu, Cuiyin</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-0720-9264</orcidid></search><sort><creationdate>20210501</creationdate><title>Intergranular passivation of the TiC coating for enhancing corrosion resistance and surface conductivity in stainless-steel bipolar plates</title><author>Li, Jingling ; Xu, Zeling ; Li, Yujian ; Ma, Xinzhou ; Mo, Jiamei ; Weng, Lingyan ; Liu, Cuiyin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-bb348d9d10c56f9de29403c5f0125cc35d53f31cd3500da64a028f14c399dc5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carbon</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Coatings</topic><topic>Columnar structure</topic><topic>Contact resistance</topic><topic>Corrosion</topic><topic>Corrosion currents</topic><topic>Corrosion prevention</topic><topic>Corrosion resistance</topic><topic>Crystallography and Scattering Methods</topic><topic>Diffusion</topic><topic>Film growth</topic><topic>Force and energy</topic><topic>Fuel cell industry</topic><topic>Grain boundaries</topic><topic>Hydrogen as fuel</topic><topic>Intergranular corrosion</topic><topic>Localized corrosion</topic><topic>Materials Science</topic><topic>Metals & Corrosion</topic><topic>Multilayers</topic><topic>Plates</topic><topic>Polymer Sciences</topic><topic>Protective coatings</topic><topic>Proton exchange membrane fuel cells</topic><topic>Reaction products</topic><topic>Solid Mechanics</topic><topic>Stainless steels</topic><topic>Steel</topic><topic>Tantalum</topic><topic>Titanium carbide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jingling</creatorcontrib><creatorcontrib>Xu, Zeling</creatorcontrib><creatorcontrib>Li, Yujian</creatorcontrib><creatorcontrib>Ma, Xinzhou</creatorcontrib><creatorcontrib>Mo, Jiamei</creatorcontrib><creatorcontrib>Weng, Lingyan</creatorcontrib><creatorcontrib>Liu, Cuiyin</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jingling</au><au>Xu, Zeling</au><au>Li, Yujian</au><au>Ma, Xinzhou</au><au>Mo, Jiamei</au><au>Weng, Lingyan</au><au>Liu, Cuiyin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intergranular passivation of the TiC coating for enhancing corrosion resistance and surface conductivity in stainless-steel bipolar plates</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>56</volume><issue>14</issue><spage>8689</spage><epage>8703</epage><pages>8689-8703</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Stainless-steel bipolar plates (BPPs) are of great significance in low-cost, easily processable, lightweight proton exchange membrane fuel cells (PEMFCs) despite the challenge presented by corrosion in protective coatings. Localized corrosion along the grain boundaries in a crystal film is common, but few preventive measures have been developed so far. Thus, we propose a novel strategy using a tantalum (Ta) and carbon (C) co-modification to improve the chemical stability of titanium carbide (TiC)-based coatings (Cr/Ta/TiC/C). During the film growth, the subjacent Ta atoms were thermally diffused throughout the columnar structure of TiC and reacted with the C layer. The reaction product, i.e., TaC, acted as a chemical passivator to the grain boundary. Combined with the C capping layer, these functional layers synergistically suppressed any localized corrosion. Therefore, corrosion current densities within the United States Department of Energy’s technical recommendations were achieved in both potentiostatic and potentiodynamic polarization. Meanwhile, by controlling the Ta metal dispersion, the interfacial contact resistance between the multilayer structure and the carbon paper can be reduced to 7.1 mΩ·cm
−2
at a compaction force of 140 N·cm
−2
. The substantial improvement in the corrosion resistance and conductivity of BPP places our work among the most efficient anticorrosion systems in PEMFC applications reported so far.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-020-05733-w</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-0720-9264</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2021-05, Vol.56 (14), p.8689-8703 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_journals_2491437236 |
source | SpringerLink Journals - AutoHoldings |
subjects | Carbon Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Coatings Columnar structure Contact resistance Corrosion Corrosion currents Corrosion prevention Corrosion resistance Crystallography and Scattering Methods Diffusion Film growth Force and energy Fuel cell industry Grain boundaries Hydrogen as fuel Intergranular corrosion Localized corrosion Materials Science Metals & Corrosion Multilayers Plates Polymer Sciences Protective coatings Proton exchange membrane fuel cells Reaction products Solid Mechanics Stainless steels Steel Tantalum Titanium carbide |
title | Intergranular passivation of the TiC coating for enhancing corrosion resistance and surface conductivity in stainless-steel bipolar plates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A57%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intergranular%20passivation%20of%20the%20TiC%20coating%20for%20enhancing%20corrosion%20resistance%20and%20surface%20conductivity%20in%20stainless-steel%20bipolar%20plates&rft.jtitle=Journal%20of%20materials%20science&rft.au=Li,%20Jingling&rft.date=2021-05-01&rft.volume=56&rft.issue=14&rft.spage=8689&rft.epage=8703&rft.pages=8689-8703&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-020-05733-w&rft_dat=%3Cgale_proqu%3EA652436883%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2491437236&rft_id=info:pmid/&rft_galeid=A652436883&rfr_iscdi=true |