Intergranular passivation of the TiC coating for enhancing corrosion resistance and surface conductivity in stainless-steel bipolar plates

Stainless-steel bipolar plates (BPPs) are of great significance in low-cost, easily processable, lightweight proton exchange membrane fuel cells (PEMFCs) despite the challenge presented by corrosion in protective coatings. Localized corrosion along the grain boundaries in a crystal film is common, b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2021-05, Vol.56 (14), p.8689-8703
Hauptverfasser: Li, Jingling, Xu, Zeling, Li, Yujian, Ma, Xinzhou, Mo, Jiamei, Weng, Lingyan, Liu, Cuiyin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8703
container_issue 14
container_start_page 8689
container_title Journal of materials science
container_volume 56
creator Li, Jingling
Xu, Zeling
Li, Yujian
Ma, Xinzhou
Mo, Jiamei
Weng, Lingyan
Liu, Cuiyin
description Stainless-steel bipolar plates (BPPs) are of great significance in low-cost, easily processable, lightweight proton exchange membrane fuel cells (PEMFCs) despite the challenge presented by corrosion in protective coatings. Localized corrosion along the grain boundaries in a crystal film is common, but few preventive measures have been developed so far. Thus, we propose a novel strategy using a tantalum (Ta) and carbon (C) co-modification to improve the chemical stability of titanium carbide (TiC)-based coatings (Cr/Ta/TiC/C). During the film growth, the subjacent Ta atoms were thermally diffused throughout the columnar structure of TiC and reacted with the C layer. The reaction product, i.e., TaC, acted as a chemical passivator to the grain boundary. Combined with the C capping layer, these functional layers synergistically suppressed any localized corrosion. Therefore, corrosion current densities within the United States Department of Energy’s technical recommendations were achieved in both potentiostatic and potentiodynamic polarization. Meanwhile, by controlling the Ta metal dispersion, the interfacial contact resistance between the multilayer structure and the carbon paper can be reduced to 7.1 mΩ·cm −2 at a compaction force of 140 N·cm −2 . The substantial improvement in the corrosion resistance and conductivity of BPP places our work among the most efficient anticorrosion systems in PEMFC applications reported so far.
doi_str_mv 10.1007/s10853-020-05733-w
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2491437236</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A652436883</galeid><sourcerecordid>A652436883</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-bb348d9d10c56f9de29403c5f0125cc35d53f31cd3500da64a028f14c399dc5f3</originalsourceid><addsrcrecordid>eNp9kctuFDEQRS0EEkPgB1hZYsXCofzonu5lNOIxUiQkCGvL40fHUcceXO6E_AJfjSeNhLJBXrh8dW6V7UvIWw7nHGD7ATkMnWQggEG3lZLdPyMb3iqmBpDPyQZACCZUz1-SV4g3AA0TfEN-71P1ZSomLbMp9GgQ452pMSeaA63Xnl7FHbW5SWmiIRfq07VJ9nSyuZSMJ7R4jFib7KlJjuJSgmm1zckttsa7WB9oTLQhMc0ekWH1fqaHeMyPU2dTPb4mL4KZ0b_5u5-RH58-Xu2-sMuvn_e7i0tm1RYqOxykGtzoONiuD6PzYlQgbReAi85a2blOBsmtkx2AM70yIIbAlZXj6Bomz8i7te-x5J-Lx6pv8lJSG6mFGrmSWyH7Rp2v1GRmr2MKuRZj23L-NraH-RCbftF3Qsl-GGQzvH9iaEz1v-pkFkS9__7tKStW1rYPxOKDPpZ4a8qD5qBPgeo1UN0C1Y-B6vtmkqsJG5wmX_7d-z-uP_wLpgs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2491437236</pqid></control><display><type>article</type><title>Intergranular passivation of the TiC coating for enhancing corrosion resistance and surface conductivity in stainless-steel bipolar plates</title><source>SpringerLink Journals - AutoHoldings</source><creator>Li, Jingling ; Xu, Zeling ; Li, Yujian ; Ma, Xinzhou ; Mo, Jiamei ; Weng, Lingyan ; Liu, Cuiyin</creator><creatorcontrib>Li, Jingling ; Xu, Zeling ; Li, Yujian ; Ma, Xinzhou ; Mo, Jiamei ; Weng, Lingyan ; Liu, Cuiyin</creatorcontrib><description>Stainless-steel bipolar plates (BPPs) are of great significance in low-cost, easily processable, lightweight proton exchange membrane fuel cells (PEMFCs) despite the challenge presented by corrosion in protective coatings. Localized corrosion along the grain boundaries in a crystal film is common, but few preventive measures have been developed so far. Thus, we propose a novel strategy using a tantalum (Ta) and carbon (C) co-modification to improve the chemical stability of titanium carbide (TiC)-based coatings (Cr/Ta/TiC/C). During the film growth, the subjacent Ta atoms were thermally diffused throughout the columnar structure of TiC and reacted with the C layer. The reaction product, i.e., TaC, acted as a chemical passivator to the grain boundary. Combined with the C capping layer, these functional layers synergistically suppressed any localized corrosion. Therefore, corrosion current densities within the United States Department of Energy’s technical recommendations were achieved in both potentiostatic and potentiodynamic polarization. Meanwhile, by controlling the Ta metal dispersion, the interfacial contact resistance between the multilayer structure and the carbon paper can be reduced to 7.1 mΩ·cm −2 at a compaction force of 140 N·cm −2 . The substantial improvement in the corrosion resistance and conductivity of BPP places our work among the most efficient anticorrosion systems in PEMFC applications reported so far.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-020-05733-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Carbon ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Coatings ; Columnar structure ; Contact resistance ; Corrosion ; Corrosion currents ; Corrosion prevention ; Corrosion resistance ; Crystallography and Scattering Methods ; Diffusion ; Film growth ; Force and energy ; Fuel cell industry ; Grain boundaries ; Hydrogen as fuel ; Intergranular corrosion ; Localized corrosion ; Materials Science ; Metals &amp; Corrosion ; Multilayers ; Plates ; Polymer Sciences ; Protective coatings ; Proton exchange membrane fuel cells ; Reaction products ; Solid Mechanics ; Stainless steels ; Steel ; Tantalum ; Titanium carbide</subject><ispartof>Journal of materials science, 2021-05, Vol.56 (14), p.8689-8703</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-bb348d9d10c56f9de29403c5f0125cc35d53f31cd3500da64a028f14c399dc5f3</citedby><cites>FETCH-LOGICAL-c470t-bb348d9d10c56f9de29403c5f0125cc35d53f31cd3500da64a028f14c399dc5f3</cites><orcidid>0000-0003-0720-9264</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-020-05733-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-020-05733-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Li, Jingling</creatorcontrib><creatorcontrib>Xu, Zeling</creatorcontrib><creatorcontrib>Li, Yujian</creatorcontrib><creatorcontrib>Ma, Xinzhou</creatorcontrib><creatorcontrib>Mo, Jiamei</creatorcontrib><creatorcontrib>Weng, Lingyan</creatorcontrib><creatorcontrib>Liu, Cuiyin</creatorcontrib><title>Intergranular passivation of the TiC coating for enhancing corrosion resistance and surface conductivity in stainless-steel bipolar plates</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Stainless-steel bipolar plates (BPPs) are of great significance in low-cost, easily processable, lightweight proton exchange membrane fuel cells (PEMFCs) despite the challenge presented by corrosion in protective coatings. Localized corrosion along the grain boundaries in a crystal film is common, but few preventive measures have been developed so far. Thus, we propose a novel strategy using a tantalum (Ta) and carbon (C) co-modification to improve the chemical stability of titanium carbide (TiC)-based coatings (Cr/Ta/TiC/C). During the film growth, the subjacent Ta atoms were thermally diffused throughout the columnar structure of TiC and reacted with the C layer. The reaction product, i.e., TaC, acted as a chemical passivator to the grain boundary. Combined with the C capping layer, these functional layers synergistically suppressed any localized corrosion. Therefore, corrosion current densities within the United States Department of Energy’s technical recommendations were achieved in both potentiostatic and potentiodynamic polarization. Meanwhile, by controlling the Ta metal dispersion, the interfacial contact resistance between the multilayer structure and the carbon paper can be reduced to 7.1 mΩ·cm −2 at a compaction force of 140 N·cm −2 . The substantial improvement in the corrosion resistance and conductivity of BPP places our work among the most efficient anticorrosion systems in PEMFC applications reported so far.</description><subject>Carbon</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Coatings</subject><subject>Columnar structure</subject><subject>Contact resistance</subject><subject>Corrosion</subject><subject>Corrosion currents</subject><subject>Corrosion prevention</subject><subject>Corrosion resistance</subject><subject>Crystallography and Scattering Methods</subject><subject>Diffusion</subject><subject>Film growth</subject><subject>Force and energy</subject><subject>Fuel cell industry</subject><subject>Grain boundaries</subject><subject>Hydrogen as fuel</subject><subject>Intergranular corrosion</subject><subject>Localized corrosion</subject><subject>Materials Science</subject><subject>Metals &amp; Corrosion</subject><subject>Multilayers</subject><subject>Plates</subject><subject>Polymer Sciences</subject><subject>Protective coatings</subject><subject>Proton exchange membrane fuel cells</subject><subject>Reaction products</subject><subject>Solid Mechanics</subject><subject>Stainless steels</subject><subject>Steel</subject><subject>Tantalum</subject><subject>Titanium carbide</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kctuFDEQRS0EEkPgB1hZYsXCofzonu5lNOIxUiQkCGvL40fHUcceXO6E_AJfjSeNhLJBXrh8dW6V7UvIWw7nHGD7ATkMnWQggEG3lZLdPyMb3iqmBpDPyQZACCZUz1-SV4g3AA0TfEN-71P1ZSomLbMp9GgQ452pMSeaA63Xnl7FHbW5SWmiIRfq07VJ9nSyuZSMJ7R4jFib7KlJjuJSgmm1zckttsa7WB9oTLQhMc0ekWH1fqaHeMyPU2dTPb4mL4KZ0b_5u5-RH58-Xu2-sMuvn_e7i0tm1RYqOxykGtzoONiuD6PzYlQgbReAi85a2blOBsmtkx2AM70yIIbAlZXj6Bomz8i7te-x5J-Lx6pv8lJSG6mFGrmSWyH7Rp2v1GRmr2MKuRZj23L-NraH-RCbftF3Qsl-GGQzvH9iaEz1v-pkFkS9__7tKStW1rYPxOKDPpZ4a8qD5qBPgeo1UN0C1Y-B6vtmkqsJG5wmX_7d-z-uP_wLpgs</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Li, Jingling</creator><creator>Xu, Zeling</creator><creator>Li, Yujian</creator><creator>Ma, Xinzhou</creator><creator>Mo, Jiamei</creator><creator>Weng, Lingyan</creator><creator>Liu, Cuiyin</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-0720-9264</orcidid></search><sort><creationdate>20210501</creationdate><title>Intergranular passivation of the TiC coating for enhancing corrosion resistance and surface conductivity in stainless-steel bipolar plates</title><author>Li, Jingling ; Xu, Zeling ; Li, Yujian ; Ma, Xinzhou ; Mo, Jiamei ; Weng, Lingyan ; Liu, Cuiyin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-bb348d9d10c56f9de29403c5f0125cc35d53f31cd3500da64a028f14c399dc5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carbon</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Coatings</topic><topic>Columnar structure</topic><topic>Contact resistance</topic><topic>Corrosion</topic><topic>Corrosion currents</topic><topic>Corrosion prevention</topic><topic>Corrosion resistance</topic><topic>Crystallography and Scattering Methods</topic><topic>Diffusion</topic><topic>Film growth</topic><topic>Force and energy</topic><topic>Fuel cell industry</topic><topic>Grain boundaries</topic><topic>Hydrogen as fuel</topic><topic>Intergranular corrosion</topic><topic>Localized corrosion</topic><topic>Materials Science</topic><topic>Metals &amp; Corrosion</topic><topic>Multilayers</topic><topic>Plates</topic><topic>Polymer Sciences</topic><topic>Protective coatings</topic><topic>Proton exchange membrane fuel cells</topic><topic>Reaction products</topic><topic>Solid Mechanics</topic><topic>Stainless steels</topic><topic>Steel</topic><topic>Tantalum</topic><topic>Titanium carbide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jingling</creatorcontrib><creatorcontrib>Xu, Zeling</creatorcontrib><creatorcontrib>Li, Yujian</creatorcontrib><creatorcontrib>Ma, Xinzhou</creatorcontrib><creatorcontrib>Mo, Jiamei</creatorcontrib><creatorcontrib>Weng, Lingyan</creatorcontrib><creatorcontrib>Liu, Cuiyin</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jingling</au><au>Xu, Zeling</au><au>Li, Yujian</au><au>Ma, Xinzhou</au><au>Mo, Jiamei</au><au>Weng, Lingyan</au><au>Liu, Cuiyin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intergranular passivation of the TiC coating for enhancing corrosion resistance and surface conductivity in stainless-steel bipolar plates</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>56</volume><issue>14</issue><spage>8689</spage><epage>8703</epage><pages>8689-8703</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Stainless-steel bipolar plates (BPPs) are of great significance in low-cost, easily processable, lightweight proton exchange membrane fuel cells (PEMFCs) despite the challenge presented by corrosion in protective coatings. Localized corrosion along the grain boundaries in a crystal film is common, but few preventive measures have been developed so far. Thus, we propose a novel strategy using a tantalum (Ta) and carbon (C) co-modification to improve the chemical stability of titanium carbide (TiC)-based coatings (Cr/Ta/TiC/C). During the film growth, the subjacent Ta atoms were thermally diffused throughout the columnar structure of TiC and reacted with the C layer. The reaction product, i.e., TaC, acted as a chemical passivator to the grain boundary. Combined with the C capping layer, these functional layers synergistically suppressed any localized corrosion. Therefore, corrosion current densities within the United States Department of Energy’s technical recommendations were achieved in both potentiostatic and potentiodynamic polarization. Meanwhile, by controlling the Ta metal dispersion, the interfacial contact resistance between the multilayer structure and the carbon paper can be reduced to 7.1 mΩ·cm −2 at a compaction force of 140 N·cm −2 . The substantial improvement in the corrosion resistance and conductivity of BPP places our work among the most efficient anticorrosion systems in PEMFC applications reported so far.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-020-05733-w</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-0720-9264</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2021-05, Vol.56 (14), p.8689-8703
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_2491437236
source SpringerLink Journals - AutoHoldings
subjects Carbon
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Coatings
Columnar structure
Contact resistance
Corrosion
Corrosion currents
Corrosion prevention
Corrosion resistance
Crystallography and Scattering Methods
Diffusion
Film growth
Force and energy
Fuel cell industry
Grain boundaries
Hydrogen as fuel
Intergranular corrosion
Localized corrosion
Materials Science
Metals & Corrosion
Multilayers
Plates
Polymer Sciences
Protective coatings
Proton exchange membrane fuel cells
Reaction products
Solid Mechanics
Stainless steels
Steel
Tantalum
Titanium carbide
title Intergranular passivation of the TiC coating for enhancing corrosion resistance and surface conductivity in stainless-steel bipolar plates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A57%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intergranular%20passivation%20of%20the%20TiC%20coating%20for%20enhancing%20corrosion%20resistance%20and%20surface%20conductivity%20in%20stainless-steel%20bipolar%20plates&rft.jtitle=Journal%20of%20materials%20science&rft.au=Li,%20Jingling&rft.date=2021-05-01&rft.volume=56&rft.issue=14&rft.spage=8689&rft.epage=8703&rft.pages=8689-8703&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-020-05733-w&rft_dat=%3Cgale_proqu%3EA652436883%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2491437236&rft_id=info:pmid/&rft_galeid=A652436883&rfr_iscdi=true