Intergranular passivation of the TiC coating for enhancing corrosion resistance and surface conductivity in stainless-steel bipolar plates
Stainless-steel bipolar plates (BPPs) are of great significance in low-cost, easily processable, lightweight proton exchange membrane fuel cells (PEMFCs) despite the challenge presented by corrosion in protective coatings. Localized corrosion along the grain boundaries in a crystal film is common, b...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2021-05, Vol.56 (14), p.8689-8703 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Stainless-steel bipolar plates (BPPs) are of great significance in low-cost, easily processable, lightweight proton exchange membrane fuel cells (PEMFCs) despite the challenge presented by corrosion in protective coatings. Localized corrosion along the grain boundaries in a crystal film is common, but few preventive measures have been developed so far. Thus, we propose a novel strategy using a tantalum (Ta) and carbon (C) co-modification to improve the chemical stability of titanium carbide (TiC)-based coatings (Cr/Ta/TiC/C). During the film growth, the subjacent Ta atoms were thermally diffused throughout the columnar structure of TiC and reacted with the C layer. The reaction product, i.e., TaC, acted as a chemical passivator to the grain boundary. Combined with the C capping layer, these functional layers synergistically suppressed any localized corrosion. Therefore, corrosion current densities within the United States Department of Energy’s technical recommendations were achieved in both potentiostatic and potentiodynamic polarization. Meanwhile, by controlling the Ta metal dispersion, the interfacial contact resistance between the multilayer structure and the carbon paper can be reduced to 7.1 mΩ·cm
−2
at a compaction force of 140 N·cm
−2
. The substantial improvement in the corrosion resistance and conductivity of BPP places our work among the most efficient anticorrosion systems in PEMFC applications reported so far. |
---|---|
ISSN: | 0022-2461 1573-4803 |
DOI: | 10.1007/s10853-020-05733-w |