Surface engineering to enhance heat generation and joint strength in dissimilar materials AZ31 and DP590 ultrasonic welding

A multiscale simulation approach was developed and employed to optimize the sheet surface conditions for higher interfacial temperature and joint strength in ultrasonic welding of magnesium alloy AZ31 and dual-phase steel DP590. First, a mesoscale model was used to study the relationship between fri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2020-12, Vol.111 (11-12), p.3095-3109
Hauptverfasser: Huang, Hui, Chen, Jian, Cheng, Jiahao, Lim, Yong Chae, Hu, Xiaohua, Feng, Zhili, Sun, Xin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A multiscale simulation approach was developed and employed to optimize the sheet surface conditions for higher interfacial temperature and joint strength in ultrasonic welding of magnesium alloy AZ31 and dual-phase steel DP590. First, a mesoscale model was used to study the relationship between friction coefficient and surface roughness, which can be modified by various engineering methods. Then a macroscopic process model was employed to study the effects of surface roughness on heat generation, indicating that a temperature increase can be achieved with rougher surfaces on two sides of both DP590 and AZ31 sheets. Samples prepared by sanding and filing, as well as grinding, were first characterized for surface roughness and then welded under ultrasonic vibration. An infrared camera was used to measure temperatures in situ for model validation. Lap shear test results for the welded joint showed that the joint strength can be improved by 10~25% using filing and round grinding methods as a result of the enhanced heat generation and mechanical interlocking on the interface.
ISSN:0268-3768
1433-3015
DOI:10.1007/s00170-020-06341-3