Moving towards in-line metrology: evaluation of a Laser Radar system for in-line dimensional inspection for automotive assembly systems
The increasing interest towards intelligent systems has led to a demand for the development of zero-defect strategies, with a paradigm shift from off-line and dedicated to in-line metrology with integrated robotic systems. However, a major barrier preventing the systematic uptake of in-line metrolog...
Gespeichert in:
Veröffentlicht in: | International journal of advanced manufacturing technology 2017-07, Vol.91 (1-4), p.69-78 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The increasing interest towards intelligent systems has led to a demand for the development of zero-defect strategies, with a paradigm shift from
off-line and dedicated
to
in-line metrology
with integrated robotic systems. However, a major barrier preventing the systematic uptake of in-line metrology is the lack of evaluation of system capability in terms of accuracy, repeatability and measurement time, when compared to the well-established coordinate measuring machine (CMM). In this study, a robotic Laser Radar (LR) solution is assessed in the context of automotive dimensional inspection of Body-In-White (BIW) applications. The objective is both to understand the effect of robot re-positioning error on measurement accuracy and repeatability and to compare measurement results against a CMM. Eighty-one surface points, six edge points, twenty-five holes and sixteen slots were selected from an industry standard measurement plan. Whilst LR exhibits a lower measurement accuracy than twin-column CMM, its repeatability is well within the specification limits for body shell quality inspection. Therefore, as a real-time in-line metrology tool, it is a genuine prospect to exploit. This research makes a significant contribution toward in-line metrology for dimensional inspection, for automotive application, for rapid detection and for correction of assembly defects in real time, with subsequent reduction of scrap and number of repairs/re-works. |
---|---|
ISSN: | 0268-3768 1433-3015 |
DOI: | 10.1007/s00170-016-9696-8 |