Steel sheets partnered with quenchable sheet in hot stamping of tailor-welded blanks and its application to separation prevention of fractured components

The phase transformation and mechanical properties of non-quenchable steels partnered with the quenchable boron steel in hot stamping of tailor-welded blanks were evaluated to produce tailored components with partially balanced strength and ductility. The effect of the forming start temperature afte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2020-11, Vol.111 (3-4), p.725-734
Hauptverfasser: Mori, Ken-ichiro, Suzuki, Yasutaka, Yokoo, Daisuke, Nishikata, Michiya, Abe, Yohei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The phase transformation and mechanical properties of non-quenchable steels partnered with the quenchable boron steel in hot stamping of tailor-welded blanks were evaluated to produce tailored components with partially balanced strength and ductility. The effect of the forming start temperature after natural air cooling on the phase transformation and mechanical properties for 270 MPa mild steel, non-quenchable steel, 440 MPa high strength steel, and 22MnB5 steel sheets was examined, and the 270 MPa and non-quenchable sheets had enough ductility after hot stamping. Tailored components having a hardness of about 500 HV1 in the high strength zone and a total elongation of about 30% in the high ductility zone were hot-stamped from a tailor-welded blank composed of 22MnB5 and 270 MPa sheets. It was found that the 270 MPa mild steel sheet is sufficient as a partner sheet of tailor-welded blanks. In addition, the safety of hot-stamped components was heightened by welding a 22MnB5 main blank with a 270 MPa steel patch. Even if the main blank is fractured by a collision, the hot-stamped component is not separated by the 270 MPa patch having high ductility.
ISSN:0268-3768
1433-3015
DOI:10.1007/s00170-020-06100-4