Rotary compression in tool cavity—a new ductile fracture calibration test

Ductile fracture is one of the most common failure modes in hot metal forming. It can be predicted by means of so-called damage functions that describe the relation between stress, deformation and fracture initiation. A practical use of these functions requires the knowledge of the critical damage v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2020-02, Vol.106 (9-10), p.4437-4449
Hauptverfasser: Pater, Zbigniew, Tomczak, Janusz, Bulzak, Tomasz, Wójcik, Łukasz, Lis, Konrad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ductile fracture is one of the most common failure modes in hot metal forming. It can be predicted by means of so-called damage functions that describe the relation between stress, deformation and fracture initiation. A practical use of these functions requires the knowledge of the critical damage value of the material that is determined by calibration tests based on compression, tension and torsion. For the prediction to be correct, one must ensure that the modelled and real stresses are in agreement. Previous studies did not offer any effective test for determining critical values of damage under changing load conditions that occur in cross and skew rolling processes, among others. To compensate for this knowledge gap, researchers at the Lublin University of Technology have developed a new test consisting in rotary compression of a test-piece in a cavity between the tools, which is described in this paper. In the proposed test, a cylindrical test-piece is rolled over a cavity (impression) created by grooves on two mating tools. The cavity height is smaller than the test-piece diameter. At the critical value of the forming length, the state of stress induced thereby in the test-piece axis causes fracture. Knowing the critical forming length, it is possible to determine the critical value of damage by numerical modelling. The practical application of the proposed test is illustrated through the case of C45 grade steel subjected to forming in the temperature range 950–1150 °C. The analysis makes use of the normalized Cockcroft-Latham (NCL) criterion of ductile fracture.
ISSN:0268-3768
1433-3015
DOI:10.1007/s00170-020-04943-5