High-yield production of graphene flakes using a novel electrochemical/mechanical hybrid exfoliation

This research aims to develop a novel hybrid process of an electrochemical intercalation and mechanical exfoliation for fabricating graphene flakes. Using a rotational tool as electrode, the graphite powders were electrochemically intercalated using ions in electrolyte, and then the expanded graphit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2019-10, Vol.104 (5-8), p.2751-2760
Hauptverfasser: Teng, Tun-Ping, Chang, Sheng-Chang, Chen, Zi-Ying, Huang, Chun-Kai, Tseng, Shih-Feng, Yang, Chii-Rong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This research aims to develop a novel hybrid process of an electrochemical intercalation and mechanical exfoliation for fabricating graphene flakes. Using a rotational tool as electrode, the graphite powders were electrochemically intercalated using ions in electrolyte, and then the expanded graphite powders were mechanically exfoliated for few-layer graphene flakes. To obtain the high-quality graphene flakes, the graphite powders were intercalated in the mixed electrolyte of myristyl alcohol surfactant added in H 2 SO 4 solution at the speed of the rotational tool of 2000 rpm and the applied voltage of ± 4 V for 1 h, and then the expanded graphite powders were mechanically exfoliated at the speed of the rotational tool of 10000 rpm for 1 h. The average thickness and lateral size of the graphene flakes was 1.42 nm and 0.5 μm measured by an atomic force microscope, respectively. The maximum C/O and I 2D / I G ratios of graphene flakes were 22.29 and 1.22 analyzed by an X-ray photoelectron spectroscope and a Raman spectrometer, respectively. Besides, the production yield of the exfoliated few-layer graphene flakes was evaluated that could achieve to 20%, which was approximately 2 times more than the pure electrochemical or pure mechanical exfoliation methods.
ISSN:0268-3768
1433-3015
DOI:10.1007/s00170-019-04158-3