Deburring of complex-shaped drilling intersections: a numerical method for modelling the tool path
When drilling holes, burrs are created in particular on the exit surface. Existing deburring tools and methods enable the deburring of plane exit surfaces or slightly curved cross-drilled holes. However, these tools do not meet practical requirements for deburring in the machining industry where com...
Gespeichert in:
Veröffentlicht in: | International journal of advanced manufacturing technology 2019-05, Vol.102 (1-4), p.67-79 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | When drilling holes, burrs are created in particular on the exit surface. Existing deburring tools and methods enable the deburring of plane exit surfaces or slightly curved cross-drilled holes. However, these tools do not meet practical requirements for deburring in the machining industry where component geometries are often complex. This paper presents a numerical method, which enables deburring of complex-shaped drilling intersections with ball-end cutters. First, the particular intersection is analysed as it defines the maximum tool diameter of the ball-end cutter. Subsequently, a three-axis tool path for ball-end cutters is generated to correlate with the intersection geometry thus enabling constant chamfering and avoiding tool collisions. The model is verified by an experiment using the material AlSi7Mg and measuring secondary burr heights and chamfer widths. Subsequently, the functionality of the model for further geometry variants is investigated. |
---|---|
ISSN: | 0268-3768 1433-3015 |
DOI: | 10.1007/s00170-018-3205-1 |