Structural design and fabrication of polycrystalline diamond micro ball-end mill
Since cemented carbide has been used as a micro-lens array mold, its processing method and micro-tool is one of the research priorities. In order to achieve high-quality milling of cemented carbide micro-lens array, the design and fabrication of the 0.5-mm diameter polycrystalline diamond (PCD) micr...
Gespeichert in:
Veröffentlicht in: | International journal of advanced manufacturing technology 2020-05, Vol.108 (5-6), p.1899-1911 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Since cemented carbide has been used as a micro-lens array mold, its processing method and micro-tool is one of the research priorities. In order to achieve high-quality milling of cemented carbide micro-lens array, the design and fabrication of the 0.5-mm diameter polycrystalline diamond (PCD) micro ball-end mill were studied. Based on the space vector, the mathematical model of the plane cutting edge of the PCD tool is established. According to the three processing characteristics of milling, grinding, and milling grinding, the double-edged conical surface micro ball-end mill, spherical micro ball-end mill, and single-edged hemispherical micro ball-end mill were designed respectively. Based on the line-face contact model of the grinding wheel and the movement principle of the CNC tool grinder, the grinding principles and methods of the rake face and the flank face are proposed. The high precision grinding of PCD micro ball-end mills are realized. The micro-groove milling experiment of cemented carbide was conducted; the milling performance of three PCD micro ball-end mills was studied. Considering the surface morphology and roughness of the micro-groove machining, a single-edged hemispherical PCD micro ball-end mill can avoid the phenomenon of chip blocking and depositing and can also fully exert the grinding characteristics of PCD materials to obtain relatively better processing quality. |
---|---|
ISSN: | 0268-3768 1433-3015 |
DOI: | 10.1007/s00170-020-05436-1 |