Study on the magnetic abrasive finishing combined with electrolytic process—investigation of machining mechanism

In order to improve the machining efficiency of a traditional plane magnetic abrasive finishing (MAF) process, the MAF combined with an electrolytic process (EMAF) was proposed. Because the relation among the magnetic field, the electric field, and the flow field of the electrolyte is very complicat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2020-05, Vol.108 (5-6), p.1675-1689
Hauptverfasser: Zou, Yanhua, Xing, Baijun, Sun, Xu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In order to improve the machining efficiency of a traditional plane magnetic abrasive finishing (MAF) process, the MAF combined with an electrolytic process (EMAF) was proposed. Because the relation among the magnetic field, the electric field, and the flow field of the electrolyte is very complicated in the EMAF process, the machining mechanism has not yet been investigated clearly. In this paper, the mechanism of the EMAF process was investigated, and mainly discusses the influencing factors of finishing stability and surface quality. First, a set of current measurements and recording devices was designed to investigate the current changes during the finishing process. The measured current value curve was used to evaluate the processing status. Then, validation experiments were performed; the influence of the particle size and supply amount of magnetic particles on processing was observed. Experimental results show that it was clarified that the optimal experimental conditions existed, and the best results were obtained when using the electrolytic iron powder (330 μm in mean diameter) and a supply amount of 0.6 g.
ISSN:0268-3768
1433-3015
DOI:10.1007/s00170-020-05442-3