Simulation and analysis of the jet flow patterns from supersonic nozzles of laser cutting using OpenFOAM

The operating pressure of gas-assisted laser cutting and the resulting exit jet pattern is one of the most important process parameters in high-pressure laser cutting. Many studies have been done to illustrate the effect of this parameter on both laser cutting quality and laser cutting capability. H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2019-06, Vol.102 (9-12), p.3229-3242
Hauptverfasser: Darwish, Mohamed, Orazi, Leonardo, Angeli, Diego
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The operating pressure of gas-assisted laser cutting and the resulting exit jet pattern is one of the most important process parameters in high-pressure laser cutting. Many studies have been done to illustrate the effect of this parameter on both laser cutting quality and laser cutting capability. However, most of these studies have been done using conical nozzles. In this paper, the exit jet from supersonic nozzle has been studied, analyzed, and simulated under three different operating conditions, namely desired design, under-expansion, and over-expansion to illustrate the effect of these operating conditions on the dynamic characteristics of the exit jet. Quasi 1-D gas dynamics theory has been used to calculate the desired design operating condition, and then an axisymmetric 2-D model has been created using the OpenFOAM Ⓡ Computational Fluid Dynamics (CFD) toolbox to simulate the gas-assisted laser cutting flow through the modeled supersonic nozzle. Finally, the proposed simulations have been validated by comparing the results with experimental observations reported in previous literature. The effect of the turbulent viscosity has been considered through the proposed model to better simulate real conditions. Moreover, the model has been optimized to be effectively used for engineering purposes. The simulation results are qualitatively consistent with the reported experimental measurements and they demonstrate that in the case of supersonic nozzles, the exit jet pattern is characterized by high uniformity, absence of Mach disks, and bounded shape for a long distance especially under the desired design operating conditions.
ISSN:0268-3768
1433-3015
DOI:10.1007/s00170-019-03346-5