Improved precise integration method for chatter stability prediction of two-DOF milling system

The motivation of this paper is to update the precise integration method (PIM) by a second-order Taylor formula and make detailed contrasts with the existing PIM, the semi-discretization method (SDM) to exhibit the necessity of developing this improved PIM (IPIM). The dynamics of two-degree of freed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2019-04, Vol.101 (5-8), p.1235-1246
Hauptverfasser: Li, Hongkun, Dai, Yuebang, Fan, Zhenfang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The motivation of this paper is to update the precise integration method (PIM) by a second-order Taylor formula and make detailed contrasts with the existing PIM, the semi-discretization method (SDM) to exhibit the necessity of developing this improved PIM (IPIM). The dynamics of two-degree of freedom (DOF) milling process with consideration of regeneration effect is first governed by a time periodic delay differential equation (DDE). With time period being evenly divided into a limited set of intervals, the integral non-homogeneous element is approximated by the second-order Taylor formula in every small time segment. After decomposing the exponential factor into a real term with 2 N order algorithm, the transition matrix representing the specific machining system state is established in one whole tooth passing period to search for the chatter-free borderline. To investigate the characteristics of the proposed method in convergence rate, prediction accuracy, and computational efficiency, the benchmark example used in the literatures is introduced to develop a battery of comparisons with PIM and SDM. Finally, the experimental verification is also conducted in a CNC machine tool to further confirm the operability of the proposed IPIM, and the results indicate the method is of availability.
ISSN:0268-3768
1433-3015
DOI:10.1007/s00170-018-2981-y