A prediction model for the milling of thin-wall parts considering thermal-mechanical coupling and tool wear

In thin-wall milling processes, the interactions between cutting loads and the displacement of the thin-wall part lead to varying tool-workpiece engagement boundaries and undesired surface form errors. This unavoidable issue becomes more severe in the machining of titanium alloys due to their poor m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2020-04, Vol.107 (11-12), p.4645-4659
Hauptverfasser: Wu, Ge, Li, Guangxian, Pan, Wencheng, Wang, Xu, Ding, Songlin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In thin-wall milling processes, the interactions between cutting loads and the displacement of the thin-wall part lead to varying tool-workpiece engagement boundaries and undesired surface form errors. This unavoidable issue becomes more severe in the machining of titanium alloys due to their poor machinability caused by the low thermal conductivity, high strength and high chemical reactivity. This paper presents a new predictive model to calculate the cutting-induced thermal-mechanical loads and workpiece deflection in milling Ti-6Al-4V thin-wall components. The cutting heat sources and the development of tool flank wear were considered in the modelling process to improve the prediction accuracy. The cutting loads were modelled analytically and calculated using an efficient iterative algorithm, and the deformation of the thin-wall part was simulated through a finite element model. A series of cutting experiments were conducted under various cutting conditions to validate the predicted results. Both the cutting forces and thin-wall displacement were recorded to examine prediction accuracy, and good agreements have been achieved between the measured results and simulated outcomes. The predicted cutting forces in the radial, feed and axial directions are within errors of 14%, 10% and 5%, respectively, concerning the experimental values. Meanwhile, the maximum predicted deformation errors at the initial, middle and end portions of the workpiece are less than 20%.
ISSN:0268-3768
1433-3015
DOI:10.1007/s00170-020-05346-2