Simulation of friction welding of alumina and steel with aluminum interlayer
Friction welding is a complicated metallurgical process that is accompanied by frictional heat generation and plastic deformation. Since the thermal cycle of friction welding is very short, simulation becomes very significant. In the present work, a finite element-based numerical model has been deve...
Gespeichert in:
Veröffentlicht in: | International journal of advanced manufacturing technology 2017-10, Vol.93 (1-4), p.121-127 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 127 |
---|---|
container_issue | 1-4 |
container_start_page | 121 |
container_title | International journal of advanced manufacturing technology |
container_volume | 93 |
creator | Hynes, N. Rajesh Jesudoss Velu, P. Shenbaga |
description | Friction welding is a complicated metallurgical process that is accompanied by frictional heat generation and plastic deformation. Since the thermal cycle of friction welding is very short, simulation becomes very significant. In the present work, a finite element-based numerical model has been developed to understand the thermo-mechanical phenomenon involved in the process of friction welding. The developed model is capable of predicting thermal distribution during friction welding of ceramics with metal using an aluminum interlayer for various time increments. Frictional heating at the interfacial region consumes the aluminum interlayer and establishes a bond between alumina and mild steel. Though there is mechanical mixing, the bond is incomplete in the aluminum-alumina interface. Due to the variation of thermal properties between alumina and mild steel, more amount of thermal stress is induced at the joint interface. Numerical simulation predicts the formation of residual stress in the alumina-mild steel side of the interface. This leads to incomplete interlocking that results in poor joint strength. |
doi_str_mv | 10.1007/s00170-015-7874-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2490840578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2490840578</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-320781a716ec88ea87abc3b940eb93268f25c55199b31c1ec767404e46ac43793</originalsourceid><addsrcrecordid>eNp9kctOwzAQRS0EEuXxAewisTbM2I7tLFHFS6rEAlhbjusUV2lS7ERV_56EdMGGrmZ0de7MaC4hNwh3CKDuEwAqoIA5VVoJqk_IDAXnlA_SKZkBk5pyJfU5uUhpPdASpZ6RxXvY9LXtQttkbZVVMbjffufrZWhWo2brfhMam9lmmaXO-zrbhe7rIPebLDSdj7Xd-3hFzipbJ399qJfk8-nxY_5CF2_Pr_OHBXVcsY5yBkqjVSi909pbrWzpeFkI8GXBh0Mrlrs8x6IoOTr0TkklQHghrRNcFfyS3E5zt7H97n3qzLrtYzOsNEwUoAXkSh-lmGQSuJTqGIVFDpqrHGGgcKJcbFOKvjLbGDY27g2CGQMwUwBm-LYZAzDjfjZ50sA2Kx__TP7X9AOWUoX_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262603667</pqid></control><display><type>article</type><title>Simulation of friction welding of alumina and steel with aluminum interlayer</title><source>SpringerNature Journals</source><creator>Hynes, N. Rajesh Jesudoss ; Velu, P. Shenbaga</creator><creatorcontrib>Hynes, N. Rajesh Jesudoss ; Velu, P. Shenbaga</creatorcontrib><description>Friction welding is a complicated metallurgical process that is accompanied by frictional heat generation and plastic deformation. Since the thermal cycle of friction welding is very short, simulation becomes very significant. In the present work, a finite element-based numerical model has been developed to understand the thermo-mechanical phenomenon involved in the process of friction welding. The developed model is capable of predicting thermal distribution during friction welding of ceramics with metal using an aluminum interlayer for various time increments. Frictional heating at the interfacial region consumes the aluminum interlayer and establishes a bond between alumina and mild steel. Though there is mechanical mixing, the bond is incomplete in the aluminum-alumina interface. Due to the variation of thermal properties between alumina and mild steel, more amount of thermal stress is induced at the joint interface. Numerical simulation predicts the formation of residual stress in the alumina-mild steel side of the interface. This leads to incomplete interlocking that results in poor joint strength.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-015-7874-8</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Alumina ; Aluminum ; Aluminum oxide ; CAE) and Design ; Computer simulation ; Computer-Aided Engineering (CAD ; Engineering ; Finite element method ; Friction welding ; Heat generation ; Industrial and Production Engineering ; Interlayers ; Low carbon steels ; Mathematical analysis ; Mathematical models ; Mechanical Engineering ; Media Management ; Metallurgy ; Numerical models ; Numerical prediction ; Original Article ; Plastic deformation ; Residual stress ; Simulation ; Thermal stress ; Thermodynamic properties</subject><ispartof>International journal of advanced manufacturing technology, 2017-10, Vol.93 (1-4), p.121-127</ispartof><rights>Springer-Verlag London 2015</rights><rights>Copyright Springer Science & Business Media 2017</rights><rights>The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2015). All Rights Reserved.</rights><rights>Springer-Verlag London 2015.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-320781a716ec88ea87abc3b940eb93268f25c55199b31c1ec767404e46ac43793</citedby><cites>FETCH-LOGICAL-c372t-320781a716ec88ea87abc3b940eb93268f25c55199b31c1ec767404e46ac43793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-015-7874-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-015-7874-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Hynes, N. Rajesh Jesudoss</creatorcontrib><creatorcontrib>Velu, P. Shenbaga</creatorcontrib><title>Simulation of friction welding of alumina and steel with aluminum interlayer</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>Friction welding is a complicated metallurgical process that is accompanied by frictional heat generation and plastic deformation. Since the thermal cycle of friction welding is very short, simulation becomes very significant. In the present work, a finite element-based numerical model has been developed to understand the thermo-mechanical phenomenon involved in the process of friction welding. The developed model is capable of predicting thermal distribution during friction welding of ceramics with metal using an aluminum interlayer for various time increments. Frictional heating at the interfacial region consumes the aluminum interlayer and establishes a bond between alumina and mild steel. Though there is mechanical mixing, the bond is incomplete in the aluminum-alumina interface. Due to the variation of thermal properties between alumina and mild steel, more amount of thermal stress is induced at the joint interface. Numerical simulation predicts the formation of residual stress in the alumina-mild steel side of the interface. This leads to incomplete interlocking that results in poor joint strength.</description><subject>Alumina</subject><subject>Aluminum</subject><subject>Aluminum oxide</subject><subject>CAE) and Design</subject><subject>Computer simulation</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Engineering</subject><subject>Finite element method</subject><subject>Friction welding</subject><subject>Heat generation</subject><subject>Industrial and Production Engineering</subject><subject>Interlayers</subject><subject>Low carbon steels</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Metallurgy</subject><subject>Numerical models</subject><subject>Numerical prediction</subject><subject>Original Article</subject><subject>Plastic deformation</subject><subject>Residual stress</subject><subject>Simulation</subject><subject>Thermal stress</subject><subject>Thermodynamic properties</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kctOwzAQRS0EEuXxAewisTbM2I7tLFHFS6rEAlhbjusUV2lS7ERV_56EdMGGrmZ0de7MaC4hNwh3CKDuEwAqoIA5VVoJqk_IDAXnlA_SKZkBk5pyJfU5uUhpPdASpZ6RxXvY9LXtQttkbZVVMbjffufrZWhWo2brfhMam9lmmaXO-zrbhe7rIPebLDSdj7Xd-3hFzipbJ399qJfk8-nxY_5CF2_Pr_OHBXVcsY5yBkqjVSi909pbrWzpeFkI8GXBh0Mrlrs8x6IoOTr0TkklQHghrRNcFfyS3E5zt7H97n3qzLrtYzOsNEwUoAXkSh-lmGQSuJTqGIVFDpqrHGGgcKJcbFOKvjLbGDY27g2CGQMwUwBm-LYZAzDjfjZ50sA2Kx__TP7X9AOWUoX_</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Hynes, N. Rajesh Jesudoss</creator><creator>Velu, P. Shenbaga</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20171001</creationdate><title>Simulation of friction welding of alumina and steel with aluminum interlayer</title><author>Hynes, N. Rajesh Jesudoss ; Velu, P. Shenbaga</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-320781a716ec88ea87abc3b940eb93268f25c55199b31c1ec767404e46ac43793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Alumina</topic><topic>Aluminum</topic><topic>Aluminum oxide</topic><topic>CAE) and Design</topic><topic>Computer simulation</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Engineering</topic><topic>Finite element method</topic><topic>Friction welding</topic><topic>Heat generation</topic><topic>Industrial and Production Engineering</topic><topic>Interlayers</topic><topic>Low carbon steels</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Metallurgy</topic><topic>Numerical models</topic><topic>Numerical prediction</topic><topic>Original Article</topic><topic>Plastic deformation</topic><topic>Residual stress</topic><topic>Simulation</topic><topic>Thermal stress</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hynes, N. Rajesh Jesudoss</creatorcontrib><creatorcontrib>Velu, P. Shenbaga</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hynes, N. Rajesh Jesudoss</au><au>Velu, P. Shenbaga</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of friction welding of alumina and steel with aluminum interlayer</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2017-10-01</date><risdate>2017</risdate><volume>93</volume><issue>1-4</issue><spage>121</spage><epage>127</epage><pages>121-127</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>Friction welding is a complicated metallurgical process that is accompanied by frictional heat generation and plastic deformation. Since the thermal cycle of friction welding is very short, simulation becomes very significant. In the present work, a finite element-based numerical model has been developed to understand the thermo-mechanical phenomenon involved in the process of friction welding. The developed model is capable of predicting thermal distribution during friction welding of ceramics with metal using an aluminum interlayer for various time increments. Frictional heating at the interfacial region consumes the aluminum interlayer and establishes a bond between alumina and mild steel. Though there is mechanical mixing, the bond is incomplete in the aluminum-alumina interface. Due to the variation of thermal properties between alumina and mild steel, more amount of thermal stress is induced at the joint interface. Numerical simulation predicts the formation of residual stress in the alumina-mild steel side of the interface. This leads to incomplete interlocking that results in poor joint strength.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-015-7874-8</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-3768 |
ispartof | International journal of advanced manufacturing technology, 2017-10, Vol.93 (1-4), p.121-127 |
issn | 0268-3768 1433-3015 |
language | eng |
recordid | cdi_proquest_journals_2490840578 |
source | SpringerNature Journals |
subjects | Alumina Aluminum Aluminum oxide CAE) and Design Computer simulation Computer-Aided Engineering (CAD Engineering Finite element method Friction welding Heat generation Industrial and Production Engineering Interlayers Low carbon steels Mathematical analysis Mathematical models Mechanical Engineering Media Management Metallurgy Numerical models Numerical prediction Original Article Plastic deformation Residual stress Simulation Thermal stress Thermodynamic properties |
title | Simulation of friction welding of alumina and steel with aluminum interlayer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A07%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20friction%20welding%20of%20alumina%20and%20steel%20with%20aluminum%20interlayer&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Hynes,%20N.%20Rajesh%20Jesudoss&rft.date=2017-10-01&rft.volume=93&rft.issue=1-4&rft.spage=121&rft.epage=127&rft.pages=121-127&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-015-7874-8&rft_dat=%3Cproquest_cross%3E2490840578%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262603667&rft_id=info:pmid/&rfr_iscdi=true |