Simulation of friction welding of alumina and steel with aluminum interlayer

Friction welding is a complicated metallurgical process that is accompanied by frictional heat generation and plastic deformation. Since the thermal cycle of friction welding is very short, simulation becomes very significant. In the present work, a finite element-based numerical model has been deve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2017-10, Vol.93 (1-4), p.121-127
Hauptverfasser: Hynes, N. Rajesh Jesudoss, Velu, P. Shenbaga
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 127
container_issue 1-4
container_start_page 121
container_title International journal of advanced manufacturing technology
container_volume 93
creator Hynes, N. Rajesh Jesudoss
Velu, P. Shenbaga
description Friction welding is a complicated metallurgical process that is accompanied by frictional heat generation and plastic deformation. Since the thermal cycle of friction welding is very short, simulation becomes very significant. In the present work, a finite element-based numerical model has been developed to understand the thermo-mechanical phenomenon involved in the process of friction welding. The developed model is capable of predicting thermal distribution during friction welding of ceramics with metal using an aluminum interlayer for various time increments. Frictional heating at the interfacial region consumes the aluminum interlayer and establishes a bond between alumina and mild steel. Though there is mechanical mixing, the bond is incomplete in the aluminum-alumina interface. Due to the variation of thermal properties between alumina and mild steel, more amount of thermal stress is induced at the joint interface. Numerical simulation predicts the formation of residual stress in the alumina-mild steel side of the interface. This leads to incomplete interlocking that results in poor joint strength.
doi_str_mv 10.1007/s00170-015-7874-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2490840578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2490840578</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-320781a716ec88ea87abc3b940eb93268f25c55199b31c1ec767404e46ac43793</originalsourceid><addsrcrecordid>eNp9kctOwzAQRS0EEuXxAewisTbM2I7tLFHFS6rEAlhbjusUV2lS7ERV_56EdMGGrmZ0de7MaC4hNwh3CKDuEwAqoIA5VVoJqk_IDAXnlA_SKZkBk5pyJfU5uUhpPdASpZ6RxXvY9LXtQttkbZVVMbjffufrZWhWo2brfhMam9lmmaXO-zrbhe7rIPebLDSdj7Xd-3hFzipbJ399qJfk8-nxY_5CF2_Pr_OHBXVcsY5yBkqjVSi909pbrWzpeFkI8GXBh0Mrlrs8x6IoOTr0TkklQHghrRNcFfyS3E5zt7H97n3qzLrtYzOsNEwUoAXkSh-lmGQSuJTqGIVFDpqrHGGgcKJcbFOKvjLbGDY27g2CGQMwUwBm-LYZAzDjfjZ50sA2Kx__TP7X9AOWUoX_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262603667</pqid></control><display><type>article</type><title>Simulation of friction welding of alumina and steel with aluminum interlayer</title><source>SpringerNature Journals</source><creator>Hynes, N. Rajesh Jesudoss ; Velu, P. Shenbaga</creator><creatorcontrib>Hynes, N. Rajesh Jesudoss ; Velu, P. Shenbaga</creatorcontrib><description>Friction welding is a complicated metallurgical process that is accompanied by frictional heat generation and plastic deformation. Since the thermal cycle of friction welding is very short, simulation becomes very significant. In the present work, a finite element-based numerical model has been developed to understand the thermo-mechanical phenomenon involved in the process of friction welding. The developed model is capable of predicting thermal distribution during friction welding of ceramics with metal using an aluminum interlayer for various time increments. Frictional heating at the interfacial region consumes the aluminum interlayer and establishes a bond between alumina and mild steel. Though there is mechanical mixing, the bond is incomplete in the aluminum-alumina interface. Due to the variation of thermal properties between alumina and mild steel, more amount of thermal stress is induced at the joint interface. Numerical simulation predicts the formation of residual stress in the alumina-mild steel side of the interface. This leads to incomplete interlocking that results in poor joint strength.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-015-7874-8</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Alumina ; Aluminum ; Aluminum oxide ; CAE) and Design ; Computer simulation ; Computer-Aided Engineering (CAD ; Engineering ; Finite element method ; Friction welding ; Heat generation ; Industrial and Production Engineering ; Interlayers ; Low carbon steels ; Mathematical analysis ; Mathematical models ; Mechanical Engineering ; Media Management ; Metallurgy ; Numerical models ; Numerical prediction ; Original Article ; Plastic deformation ; Residual stress ; Simulation ; Thermal stress ; Thermodynamic properties</subject><ispartof>International journal of advanced manufacturing technology, 2017-10, Vol.93 (1-4), p.121-127</ispartof><rights>Springer-Verlag London 2015</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><rights>The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2015). All Rights Reserved.</rights><rights>Springer-Verlag London 2015.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-320781a716ec88ea87abc3b940eb93268f25c55199b31c1ec767404e46ac43793</citedby><cites>FETCH-LOGICAL-c372t-320781a716ec88ea87abc3b940eb93268f25c55199b31c1ec767404e46ac43793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-015-7874-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-015-7874-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Hynes, N. Rajesh Jesudoss</creatorcontrib><creatorcontrib>Velu, P. Shenbaga</creatorcontrib><title>Simulation of friction welding of alumina and steel with aluminum interlayer</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>Friction welding is a complicated metallurgical process that is accompanied by frictional heat generation and plastic deformation. Since the thermal cycle of friction welding is very short, simulation becomes very significant. In the present work, a finite element-based numerical model has been developed to understand the thermo-mechanical phenomenon involved in the process of friction welding. The developed model is capable of predicting thermal distribution during friction welding of ceramics with metal using an aluminum interlayer for various time increments. Frictional heating at the interfacial region consumes the aluminum interlayer and establishes a bond between alumina and mild steel. Though there is mechanical mixing, the bond is incomplete in the aluminum-alumina interface. Due to the variation of thermal properties between alumina and mild steel, more amount of thermal stress is induced at the joint interface. Numerical simulation predicts the formation of residual stress in the alumina-mild steel side of the interface. This leads to incomplete interlocking that results in poor joint strength.</description><subject>Alumina</subject><subject>Aluminum</subject><subject>Aluminum oxide</subject><subject>CAE) and Design</subject><subject>Computer simulation</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Engineering</subject><subject>Finite element method</subject><subject>Friction welding</subject><subject>Heat generation</subject><subject>Industrial and Production Engineering</subject><subject>Interlayers</subject><subject>Low carbon steels</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Metallurgy</subject><subject>Numerical models</subject><subject>Numerical prediction</subject><subject>Original Article</subject><subject>Plastic deformation</subject><subject>Residual stress</subject><subject>Simulation</subject><subject>Thermal stress</subject><subject>Thermodynamic properties</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kctOwzAQRS0EEuXxAewisTbM2I7tLFHFS6rEAlhbjusUV2lS7ERV_56EdMGGrmZ0de7MaC4hNwh3CKDuEwAqoIA5VVoJqk_IDAXnlA_SKZkBk5pyJfU5uUhpPdASpZ6RxXvY9LXtQttkbZVVMbjffufrZWhWo2brfhMam9lmmaXO-zrbhe7rIPebLDSdj7Xd-3hFzipbJ399qJfk8-nxY_5CF2_Pr_OHBXVcsY5yBkqjVSi909pbrWzpeFkI8GXBh0Mrlrs8x6IoOTr0TkklQHghrRNcFfyS3E5zt7H97n3qzLrtYzOsNEwUoAXkSh-lmGQSuJTqGIVFDpqrHGGgcKJcbFOKvjLbGDY27g2CGQMwUwBm-LYZAzDjfjZ50sA2Kx__TP7X9AOWUoX_</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Hynes, N. Rajesh Jesudoss</creator><creator>Velu, P. Shenbaga</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20171001</creationdate><title>Simulation of friction welding of alumina and steel with aluminum interlayer</title><author>Hynes, N. Rajesh Jesudoss ; Velu, P. Shenbaga</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-320781a716ec88ea87abc3b940eb93268f25c55199b31c1ec767404e46ac43793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Alumina</topic><topic>Aluminum</topic><topic>Aluminum oxide</topic><topic>CAE) and Design</topic><topic>Computer simulation</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Engineering</topic><topic>Finite element method</topic><topic>Friction welding</topic><topic>Heat generation</topic><topic>Industrial and Production Engineering</topic><topic>Interlayers</topic><topic>Low carbon steels</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Metallurgy</topic><topic>Numerical models</topic><topic>Numerical prediction</topic><topic>Original Article</topic><topic>Plastic deformation</topic><topic>Residual stress</topic><topic>Simulation</topic><topic>Thermal stress</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hynes, N. Rajesh Jesudoss</creatorcontrib><creatorcontrib>Velu, P. Shenbaga</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hynes, N. Rajesh Jesudoss</au><au>Velu, P. Shenbaga</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of friction welding of alumina and steel with aluminum interlayer</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2017-10-01</date><risdate>2017</risdate><volume>93</volume><issue>1-4</issue><spage>121</spage><epage>127</epage><pages>121-127</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>Friction welding is a complicated metallurgical process that is accompanied by frictional heat generation and plastic deformation. Since the thermal cycle of friction welding is very short, simulation becomes very significant. In the present work, a finite element-based numerical model has been developed to understand the thermo-mechanical phenomenon involved in the process of friction welding. The developed model is capable of predicting thermal distribution during friction welding of ceramics with metal using an aluminum interlayer for various time increments. Frictional heating at the interfacial region consumes the aluminum interlayer and establishes a bond between alumina and mild steel. Though there is mechanical mixing, the bond is incomplete in the aluminum-alumina interface. Due to the variation of thermal properties between alumina and mild steel, more amount of thermal stress is induced at the joint interface. Numerical simulation predicts the formation of residual stress in the alumina-mild steel side of the interface. This leads to incomplete interlocking that results in poor joint strength.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-015-7874-8</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2017-10, Vol.93 (1-4), p.121-127
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_2490840578
source SpringerNature Journals
subjects Alumina
Aluminum
Aluminum oxide
CAE) and Design
Computer simulation
Computer-Aided Engineering (CAD
Engineering
Finite element method
Friction welding
Heat generation
Industrial and Production Engineering
Interlayers
Low carbon steels
Mathematical analysis
Mathematical models
Mechanical Engineering
Media Management
Metallurgy
Numerical models
Numerical prediction
Original Article
Plastic deformation
Residual stress
Simulation
Thermal stress
Thermodynamic properties
title Simulation of friction welding of alumina and steel with aluminum interlayer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A07%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20friction%20welding%20of%20alumina%20and%20steel%20with%20aluminum%20interlayer&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Hynes,%20N.%20Rajesh%20Jesudoss&rft.date=2017-10-01&rft.volume=93&rft.issue=1-4&rft.spage=121&rft.epage=127&rft.pages=121-127&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-015-7874-8&rft_dat=%3Cproquest_cross%3E2490840578%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262603667&rft_id=info:pmid/&rfr_iscdi=true