Simulation of friction welding of alumina and steel with aluminum interlayer

Friction welding is a complicated metallurgical process that is accompanied by frictional heat generation and plastic deformation. Since the thermal cycle of friction welding is very short, simulation becomes very significant. In the present work, a finite element-based numerical model has been deve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2017-10, Vol.93 (1-4), p.121-127
Hauptverfasser: Hynes, N. Rajesh Jesudoss, Velu, P. Shenbaga
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Friction welding is a complicated metallurgical process that is accompanied by frictional heat generation and plastic deformation. Since the thermal cycle of friction welding is very short, simulation becomes very significant. In the present work, a finite element-based numerical model has been developed to understand the thermo-mechanical phenomenon involved in the process of friction welding. The developed model is capable of predicting thermal distribution during friction welding of ceramics with metal using an aluminum interlayer for various time increments. Frictional heating at the interfacial region consumes the aluminum interlayer and establishes a bond between alumina and mild steel. Though there is mechanical mixing, the bond is incomplete in the aluminum-alumina interface. Due to the variation of thermal properties between alumina and mild steel, more amount of thermal stress is induced at the joint interface. Numerical simulation predicts the formation of residual stress in the alumina-mild steel side of the interface. This leads to incomplete interlocking that results in poor joint strength.
ISSN:0268-3768
1433-3015
DOI:10.1007/s00170-015-7874-8