A preliminary study on the double cold wire gas metal arc welding process

The increasing demands in productivity and reliability in welding have led to the development of newer welding processes. These processes frequently have superior deposition rates; however, they might lead to a wider heat-affected zone (HAZ) which might impair their mechanical properties. Here, a pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2020-02, Vol.106 (11-12), p.5393-5405
Hauptverfasser: Assunção, P. D. C., Ribeiro, R. A., Moreira, P. M. G. P., Braga, E. M., Gerlich, A. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The increasing demands in productivity and reliability in welding have led to the development of newer welding processes. These processes frequently have superior deposition rates; however, they might lead to a wider heat-affected zone (HAZ) which might impair their mechanical properties. Here, a promising process termed the double cold wire gas metal arc welding (DCW-GMAW) is evaluated, offering higher deposition rates via feeding two cold wires into the weld pool to improve productivity. In contrast to similar processes, the HAZ of DCW-GMAW welds are smaller than gas metal arc welding (GMAW) welds. This work reports a preliminary assessment of the feasibility of the process in terms of electrical arc characteristics and stability. High-speed video acquisition was used to analyze the metal transfer across the arc. Finally, standard metallographic techniques and Vickers hardness were used to assess the weld cross sections and microstructures. The results demonstrate the feasibility of DCW-GMAW based on the process stability at different cold wire feed rates while also offering high deposition (high productivity) of weld deposits with desirable hardness due to increased acicular ferrite content.
ISSN:0268-3768
1433-3015
DOI:10.1007/s00170-020-05005-6