Global Bifurcation from Zero in Some Fourth-Order Nonlinear Eigenvalue Problems
In this paper, we study the nonlinear eigenvalue problem for ordinary differential equations of fourth order with a spectral parameter in the boundary condition. Global bifurcation of nontrivial solutions of this problem is investigated. We prove the existence of two families of unbounded continua o...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Malaysian Mathematical Sciences Society 2021-03, Vol.44 (2), p.981-992 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 992 |
---|---|
container_issue | 2 |
container_start_page | 981 |
container_title | Bulletin of the Malaysian Mathematical Sciences Society |
container_volume | 44 |
creator | Aliyev, Z. S. Asadov, X. A. |
description | In this paper, we study the nonlinear eigenvalue problem for ordinary differential equations of fourth order with a spectral parameter in the boundary condition. Global bifurcation of nontrivial solutions of this problem is investigated. We prove the existence of two families of unbounded continua of the set of solutions to this problem bifurcating from points and intervals of the line of trivial solutions. Moreover, it is shown that these continua are contained in classes of functions possessing oscillating properties of the eigenfunctions of the corresponding linear problem and their derivatives. |
doi_str_mv | 10.1007/s40840-020-00989-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2490667955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2490667955</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-4eaa1583360ddb387adea27bc2b2c7baaf43a86187edeb60879fc7fe7e82c9733</originalsourceid><addsrcrecordid>eNp9kEFLxDAQhYMouKz7BzwFPEcnaZukR112V0FcQb14CWk7Xbu0zZq0gv_eaAVvDgxzee_N4yPknMMlB1BXIQWdAgMRF3KdM3lEZoJrYKkAeUxmwIVkUkF2ShYh7CFOJoUUfEa2m9YVtqU3TT360g6N62ntXUdf0Tva9PTJdUjXbvTDG9v6Cj19cH3b9Gg9XTU77D9sOyJ99K5osQtn5KS2bcDF752Tl_XqeXnL7rebu-X1PSuFgoGlaC3PdJJIqKoi0cpWaIUqSlGIUhXW1mliteRaYYWFBK3yulQ1KtSizFWSzMnFlHvw7n3EMJh97NjHl0akOUip8iyLKjGpSu9C8Fibg2866z8NB_PNzkzsTGRnftgZGU3JZApR3O_Q_0X_4_oCld1xvQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2490667955</pqid></control><display><type>article</type><title>Global Bifurcation from Zero in Some Fourth-Order Nonlinear Eigenvalue Problems</title><source>SpringerLink Journals</source><creator>Aliyev, Z. S. ; Asadov, X. A.</creator><creatorcontrib>Aliyev, Z. S. ; Asadov, X. A.</creatorcontrib><description>In this paper, we study the nonlinear eigenvalue problem for ordinary differential equations of fourth order with a spectral parameter in the boundary condition. Global bifurcation of nontrivial solutions of this problem is investigated. We prove the existence of two families of unbounded continua of the set of solutions to this problem bifurcating from points and intervals of the line of trivial solutions. Moreover, it is shown that these continua are contained in classes of functions possessing oscillating properties of the eigenfunctions of the corresponding linear problem and their derivatives.</description><identifier>ISSN: 0126-6705</identifier><identifier>EISSN: 2180-4206</identifier><identifier>DOI: 10.1007/s40840-020-00989-6</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Applications of Mathematics ; Bifurcations ; Boundary conditions ; Differential equations ; Eigenvalues ; Eigenvectors ; Mathematics ; Mathematics and Statistics ; Ordinary differential equations</subject><ispartof>Bulletin of the Malaysian Mathematical Sciences Society, 2021-03, Vol.44 (2), p.981-992</ispartof><rights>Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2020</rights><rights>Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-4eaa1583360ddb387adea27bc2b2c7baaf43a86187edeb60879fc7fe7e82c9733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40840-020-00989-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40840-020-00989-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Aliyev, Z. S.</creatorcontrib><creatorcontrib>Asadov, X. A.</creatorcontrib><title>Global Bifurcation from Zero in Some Fourth-Order Nonlinear Eigenvalue Problems</title><title>Bulletin of the Malaysian Mathematical Sciences Society</title><addtitle>Bull. Malays. Math. Sci. Soc</addtitle><description>In this paper, we study the nonlinear eigenvalue problem for ordinary differential equations of fourth order with a spectral parameter in the boundary condition. Global bifurcation of nontrivial solutions of this problem is investigated. We prove the existence of two families of unbounded continua of the set of solutions to this problem bifurcating from points and intervals of the line of trivial solutions. Moreover, it is shown that these continua are contained in classes of functions possessing oscillating properties of the eigenfunctions of the corresponding linear problem and their derivatives.</description><subject>Applications of Mathematics</subject><subject>Bifurcations</subject><subject>Boundary conditions</subject><subject>Differential equations</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Ordinary differential equations</subject><issn>0126-6705</issn><issn>2180-4206</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLxDAQhYMouKz7BzwFPEcnaZukR112V0FcQb14CWk7Xbu0zZq0gv_eaAVvDgxzee_N4yPknMMlB1BXIQWdAgMRF3KdM3lEZoJrYKkAeUxmwIVkUkF2ShYh7CFOJoUUfEa2m9YVtqU3TT360g6N62ntXUdf0Tva9PTJdUjXbvTDG9v6Cj19cH3b9Gg9XTU77D9sOyJ99K5osQtn5KS2bcDF752Tl_XqeXnL7rebu-X1PSuFgoGlaC3PdJJIqKoi0cpWaIUqSlGIUhXW1mliteRaYYWFBK3yulQ1KtSizFWSzMnFlHvw7n3EMJh97NjHl0akOUip8iyLKjGpSu9C8Fibg2866z8NB_PNzkzsTGRnftgZGU3JZApR3O_Q_0X_4_oCld1xvQ</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Aliyev, Z. S.</creator><creator>Asadov, X. A.</creator><general>Springer Singapore</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210301</creationdate><title>Global Bifurcation from Zero in Some Fourth-Order Nonlinear Eigenvalue Problems</title><author>Aliyev, Z. S. ; Asadov, X. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-4eaa1583360ddb387adea27bc2b2c7baaf43a86187edeb60879fc7fe7e82c9733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applications of Mathematics</topic><topic>Bifurcations</topic><topic>Boundary conditions</topic><topic>Differential equations</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Ordinary differential equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aliyev, Z. S.</creatorcontrib><creatorcontrib>Asadov, X. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Bulletin of the Malaysian Mathematical Sciences Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aliyev, Z. S.</au><au>Asadov, X. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global Bifurcation from Zero in Some Fourth-Order Nonlinear Eigenvalue Problems</atitle><jtitle>Bulletin of the Malaysian Mathematical Sciences Society</jtitle><stitle>Bull. Malays. Math. Sci. Soc</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>44</volume><issue>2</issue><spage>981</spage><epage>992</epage><pages>981-992</pages><issn>0126-6705</issn><eissn>2180-4206</eissn><abstract>In this paper, we study the nonlinear eigenvalue problem for ordinary differential equations of fourth order with a spectral parameter in the boundary condition. Global bifurcation of nontrivial solutions of this problem is investigated. We prove the existence of two families of unbounded continua of the set of solutions to this problem bifurcating from points and intervals of the line of trivial solutions. Moreover, it is shown that these continua are contained in classes of functions possessing oscillating properties of the eigenfunctions of the corresponding linear problem and their derivatives.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><doi>10.1007/s40840-020-00989-6</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0126-6705 |
ispartof | Bulletin of the Malaysian Mathematical Sciences Society, 2021-03, Vol.44 (2), p.981-992 |
issn | 0126-6705 2180-4206 |
language | eng |
recordid | cdi_proquest_journals_2490667955 |
source | SpringerLink Journals |
subjects | Applications of Mathematics Bifurcations Boundary conditions Differential equations Eigenvalues Eigenvectors Mathematics Mathematics and Statistics Ordinary differential equations |
title | Global Bifurcation from Zero in Some Fourth-Order Nonlinear Eigenvalue Problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T20%3A55%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20Bifurcation%20from%20Zero%20in%20Some%20Fourth-Order%20Nonlinear%20Eigenvalue%20Problems&rft.jtitle=Bulletin%20of%20the%20Malaysian%20Mathematical%20Sciences%20Society&rft.au=Aliyev,%20Z.%20S.&rft.date=2021-03-01&rft.volume=44&rft.issue=2&rft.spage=981&rft.epage=992&rft.pages=981-992&rft.issn=0126-6705&rft.eissn=2180-4206&rft_id=info:doi/10.1007/s40840-020-00989-6&rft_dat=%3Cproquest_cross%3E2490667955%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2490667955&rft_id=info:pmid/&rfr_iscdi=true |