Global Bifurcation from Zero in Some Fourth-Order Nonlinear Eigenvalue Problems

In this paper, we study the nonlinear eigenvalue problem for ordinary differential equations of fourth order with a spectral parameter in the boundary condition. Global bifurcation of nontrivial solutions of this problem is investigated. We prove the existence of two families of unbounded continua o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Malaysian Mathematical Sciences Society 2021-03, Vol.44 (2), p.981-992
Hauptverfasser: Aliyev, Z. S., Asadov, X. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 992
container_issue 2
container_start_page 981
container_title Bulletin of the Malaysian Mathematical Sciences Society
container_volume 44
creator Aliyev, Z. S.
Asadov, X. A.
description In this paper, we study the nonlinear eigenvalue problem for ordinary differential equations of fourth order with a spectral parameter in the boundary condition. Global bifurcation of nontrivial solutions of this problem is investigated. We prove the existence of two families of unbounded continua of the set of solutions to this problem bifurcating from points and intervals of the line of trivial solutions. Moreover, it is shown that these continua are contained in classes of functions possessing oscillating properties of the eigenfunctions of the corresponding linear problem and their derivatives.
doi_str_mv 10.1007/s40840-020-00989-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2490667955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2490667955</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-4eaa1583360ddb387adea27bc2b2c7baaf43a86187edeb60879fc7fe7e82c9733</originalsourceid><addsrcrecordid>eNp9kEFLxDAQhYMouKz7BzwFPEcnaZukR112V0FcQb14CWk7Xbu0zZq0gv_eaAVvDgxzee_N4yPknMMlB1BXIQWdAgMRF3KdM3lEZoJrYKkAeUxmwIVkUkF2ShYh7CFOJoUUfEa2m9YVtqU3TT360g6N62ntXUdf0Tva9PTJdUjXbvTDG9v6Cj19cH3b9Gg9XTU77D9sOyJ99K5osQtn5KS2bcDF752Tl_XqeXnL7rebu-X1PSuFgoGlaC3PdJJIqKoi0cpWaIUqSlGIUhXW1mliteRaYYWFBK3yulQ1KtSizFWSzMnFlHvw7n3EMJh97NjHl0akOUip8iyLKjGpSu9C8Fibg2866z8NB_PNzkzsTGRnftgZGU3JZApR3O_Q_0X_4_oCld1xvQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2490667955</pqid></control><display><type>article</type><title>Global Bifurcation from Zero in Some Fourth-Order Nonlinear Eigenvalue Problems</title><source>SpringerLink Journals</source><creator>Aliyev, Z. S. ; Asadov, X. A.</creator><creatorcontrib>Aliyev, Z. S. ; Asadov, X. A.</creatorcontrib><description>In this paper, we study the nonlinear eigenvalue problem for ordinary differential equations of fourth order with a spectral parameter in the boundary condition. Global bifurcation of nontrivial solutions of this problem is investigated. We prove the existence of two families of unbounded continua of the set of solutions to this problem bifurcating from points and intervals of the line of trivial solutions. Moreover, it is shown that these continua are contained in classes of functions possessing oscillating properties of the eigenfunctions of the corresponding linear problem and their derivatives.</description><identifier>ISSN: 0126-6705</identifier><identifier>EISSN: 2180-4206</identifier><identifier>DOI: 10.1007/s40840-020-00989-6</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Applications of Mathematics ; Bifurcations ; Boundary conditions ; Differential equations ; Eigenvalues ; Eigenvectors ; Mathematics ; Mathematics and Statistics ; Ordinary differential equations</subject><ispartof>Bulletin of the Malaysian Mathematical Sciences Society, 2021-03, Vol.44 (2), p.981-992</ispartof><rights>Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2020</rights><rights>Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-4eaa1583360ddb387adea27bc2b2c7baaf43a86187edeb60879fc7fe7e82c9733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40840-020-00989-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40840-020-00989-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Aliyev, Z. S.</creatorcontrib><creatorcontrib>Asadov, X. A.</creatorcontrib><title>Global Bifurcation from Zero in Some Fourth-Order Nonlinear Eigenvalue Problems</title><title>Bulletin of the Malaysian Mathematical Sciences Society</title><addtitle>Bull. Malays. Math. Sci. Soc</addtitle><description>In this paper, we study the nonlinear eigenvalue problem for ordinary differential equations of fourth order with a spectral parameter in the boundary condition. Global bifurcation of nontrivial solutions of this problem is investigated. We prove the existence of two families of unbounded continua of the set of solutions to this problem bifurcating from points and intervals of the line of trivial solutions. Moreover, it is shown that these continua are contained in classes of functions possessing oscillating properties of the eigenfunctions of the corresponding linear problem and their derivatives.</description><subject>Applications of Mathematics</subject><subject>Bifurcations</subject><subject>Boundary conditions</subject><subject>Differential equations</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Ordinary differential equations</subject><issn>0126-6705</issn><issn>2180-4206</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLxDAQhYMouKz7BzwFPEcnaZukR112V0FcQb14CWk7Xbu0zZq0gv_eaAVvDgxzee_N4yPknMMlB1BXIQWdAgMRF3KdM3lEZoJrYKkAeUxmwIVkUkF2ShYh7CFOJoUUfEa2m9YVtqU3TT360g6N62ntXUdf0Tva9PTJdUjXbvTDG9v6Cj19cH3b9Gg9XTU77D9sOyJ99K5osQtn5KS2bcDF752Tl_XqeXnL7rebu-X1PSuFgoGlaC3PdJJIqKoi0cpWaIUqSlGIUhXW1mliteRaYYWFBK3yulQ1KtSizFWSzMnFlHvw7n3EMJh97NjHl0akOUip8iyLKjGpSu9C8Fibg2866z8NB_PNzkzsTGRnftgZGU3JZApR3O_Q_0X_4_oCld1xvQ</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Aliyev, Z. S.</creator><creator>Asadov, X. A.</creator><general>Springer Singapore</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210301</creationdate><title>Global Bifurcation from Zero in Some Fourth-Order Nonlinear Eigenvalue Problems</title><author>Aliyev, Z. S. ; Asadov, X. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-4eaa1583360ddb387adea27bc2b2c7baaf43a86187edeb60879fc7fe7e82c9733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applications of Mathematics</topic><topic>Bifurcations</topic><topic>Boundary conditions</topic><topic>Differential equations</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Ordinary differential equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aliyev, Z. S.</creatorcontrib><creatorcontrib>Asadov, X. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Bulletin of the Malaysian Mathematical Sciences Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aliyev, Z. S.</au><au>Asadov, X. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global Bifurcation from Zero in Some Fourth-Order Nonlinear Eigenvalue Problems</atitle><jtitle>Bulletin of the Malaysian Mathematical Sciences Society</jtitle><stitle>Bull. Malays. Math. Sci. Soc</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>44</volume><issue>2</issue><spage>981</spage><epage>992</epage><pages>981-992</pages><issn>0126-6705</issn><eissn>2180-4206</eissn><abstract>In this paper, we study the nonlinear eigenvalue problem for ordinary differential equations of fourth order with a spectral parameter in the boundary condition. Global bifurcation of nontrivial solutions of this problem is investigated. We prove the existence of two families of unbounded continua of the set of solutions to this problem bifurcating from points and intervals of the line of trivial solutions. Moreover, it is shown that these continua are contained in classes of functions possessing oscillating properties of the eigenfunctions of the corresponding linear problem and their derivatives.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><doi>10.1007/s40840-020-00989-6</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0126-6705
ispartof Bulletin of the Malaysian Mathematical Sciences Society, 2021-03, Vol.44 (2), p.981-992
issn 0126-6705
2180-4206
language eng
recordid cdi_proquest_journals_2490667955
source SpringerLink Journals
subjects Applications of Mathematics
Bifurcations
Boundary conditions
Differential equations
Eigenvalues
Eigenvectors
Mathematics
Mathematics and Statistics
Ordinary differential equations
title Global Bifurcation from Zero in Some Fourth-Order Nonlinear Eigenvalue Problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T20%3A55%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20Bifurcation%20from%20Zero%20in%20Some%20Fourth-Order%20Nonlinear%20Eigenvalue%20Problems&rft.jtitle=Bulletin%20of%20the%20Malaysian%20Mathematical%20Sciences%20Society&rft.au=Aliyev,%20Z.%20S.&rft.date=2021-03-01&rft.volume=44&rft.issue=2&rft.spage=981&rft.epage=992&rft.pages=981-992&rft.issn=0126-6705&rft.eissn=2180-4206&rft_id=info:doi/10.1007/s40840-020-00989-6&rft_dat=%3Cproquest_cross%3E2490667955%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2490667955&rft_id=info:pmid/&rfr_iscdi=true