Global Bifurcation from Zero in Some Fourth-Order Nonlinear Eigenvalue Problems

In this paper, we study the nonlinear eigenvalue problem for ordinary differential equations of fourth order with a spectral parameter in the boundary condition. Global bifurcation of nontrivial solutions of this problem is investigated. We prove the existence of two families of unbounded continua o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Malaysian Mathematical Sciences Society 2021-03, Vol.44 (2), p.981-992
Hauptverfasser: Aliyev, Z. S., Asadov, X. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study the nonlinear eigenvalue problem for ordinary differential equations of fourth order with a spectral parameter in the boundary condition. Global bifurcation of nontrivial solutions of this problem is investigated. We prove the existence of two families of unbounded continua of the set of solutions to this problem bifurcating from points and intervals of the line of trivial solutions. Moreover, it is shown that these continua are contained in classes of functions possessing oscillating properties of the eigenfunctions of the corresponding linear problem and their derivatives.
ISSN:0126-6705
2180-4206
DOI:10.1007/s40840-020-00989-6