Some Results on the 3-Vertex-Rainbow Index of a Graph
Let G be a nontrivial connected graph with a vertex-coloring c : V ( G ) → { 1 , 2 , … , q } , q ∈ N . For a set S ⊆ V ( G ) and | S | ≥ 2 , a subtree T of G satisfying S ⊆ V ( T ) is said to be an S -Steiner tree or simply S -tree. The S -tree T is called a vertex-rainbow S -tree if the vertices of...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Malaysian Mathematical Sciences Society 2021-03, Vol.44 (2), p.1015-1034 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
G
be a nontrivial connected graph with a vertex-coloring
c
:
V
(
G
)
→
{
1
,
2
,
…
,
q
}
,
q
∈
N
. For a set
S
⊆
V
(
G
)
and
|
S
|
≥
2
, a subtree
T
of
G
satisfying
S
⊆
V
(
T
)
is said to be an
S
-Steiner tree or simply
S
-tree. The
S
-tree
T
is called a vertex-rainbow
S
-tree if the vertices of
V
(
T
)
\
S
have distinct colors. Let
k
be a fixed integer with
2
≤
k
≤
|
V
(
G
)
|
, if every
k
-subset
S
of
V
(
G
) has a vertex-rainbow
S
-tree, then
G
is said to be vertex-rainbow
k
-tree connected. The
k
-vertex-rainbow index of
G
, denoted by
r
v
x
k
(
G
)
, is the minimum number of colors that are needed in order to make
G
vertex-rainbow
k
-tree connected. In this paper, we study the 3-vertex-rainbow index of unicyclic graphs and complementary graphs, respectively. |
---|---|
ISSN: | 0126-6705 2180-4206 |
DOI: | 10.1007/s40840-020-00992-x |