One-pot electrosynthesis and physicochemical properties of multifunctional material based on graphene oxide, poly-o-phenylenediamine, and silicotungstic acid
The methods of silicotungstic acid (SiW) immobilization on conducting substrates were studied. For SiW immobilization by codeposition, poly-o-phenylenediamine (PPD) redox polymer was used. The most effective codeposition of SiW and PPD was demonstrated on a graphene oxide (GO) film. Meanwhile, GO is...
Gespeichert in:
Veröffentlicht in: | Journal of solid state electrochemistry 2021-03, Vol.25 (3), p.859-868 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The methods of silicotungstic acid (SiW) immobilization on conducting substrates were studied. For SiW immobilization by codeposition, poly-o-phenylenediamine (PPD) redox polymer was used. The most effective codeposition of SiW and PPD was demonstrated on a graphene oxide (GO) film. Meanwhile, GO is reduced to form RGO-PPD-SiW electroactive composite. The structure of the novel material was evidenced by cyclic voltammetry and IR and Raman spectra. PPD-SiW and RGO-PPD-SiW composites were studied by impedance spectroscopy, where an equivalent circuit was proposed. Film resistance
R
f
was shown to decrease in the series of PPD → RGO-PPD → RGO-PPD-SiW. Further, RGO-PPD-SiW has better transfer properties (bulk film diffusion rate). This enabled suggesting that the composite has better electrocatalytic properties than PPD and RGO-PPD as was evidenced for example of [Fe(CN)
6
]
4−/3−
redox transfer on the electrode coated with the novel material. |
---|---|
ISSN: | 1432-8488 1433-0768 |
DOI: | 10.1007/s10008-020-04859-w |