Making the most of your day: online learning for optimal allocation of time

We study online learning for optimal allocation when the resource to be allocated is time. %Examples of possible applications include job scheduling for a computing server, a driver filling a day with rides, a landlord renting an estate, etc. An agent receives task proposals sequentially according t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-11
Hauptverfasser: Boursier, Etienne, Garrec, Tristan, Perchet, Vianney, Scarsini, Marco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study online learning for optimal allocation when the resource to be allocated is time. %Examples of possible applications include job scheduling for a computing server, a driver filling a day with rides, a landlord renting an estate, etc. An agent receives task proposals sequentially according to a Poisson process and can either accept or reject a proposed task. If she accepts the proposal, she is busy for the duration of the task and obtains a reward that depends on the task duration. If she rejects it, she remains on hold until a new task proposal arrives. We study the regret incurred by the agent, first when she knows her reward function but does not know the distribution of the task duration, and then when she does not know her reward function, either. This natural setting bears similarities with contextual (one-armed) bandits, but with the crucial difference that the normalized reward associated to a context depends on the whole distribution of contexts.
ISSN:2331-8422