Counting Hamiltonian cycles in 2-tiled graphs
In 1930, Kuratowski showed that \(K_{3,3}\) and \(K_5\) are the only two minor-minimal non-planar graphs. Robertson and Seymour extended finiteness of the set of forbidden minors for any surface. Šir\'{a}ň and Kochol showed that there are infinitely many \(k\)-crossing-critical graphs for any \...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-02 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Kalamar, Alen Vegi Žerak, Tadej Drago Bokal |
description | In 1930, Kuratowski showed that \(K_{3,3}\) and \(K_5\) are the only two minor-minimal non-planar graphs. Robertson and Seymour extended finiteness of the set of forbidden minors for any surface. Šir\'{a}ň and Kochol showed that there are infinitely many \(k\)-crossing-critical graphs for any \(k\ge 2\), even if restricted to simple \(3\)-connected graphs. Recently, \(2\)-crossing-critical graphs have been completely characterized by Bokal, Oporowski, Richter, and Salazar. We present a simplified description of large 2-crossing-critical graphs and use this simplification to count Hamiltonian cycles in such graphs. We generalize this approach to an algorithm counting Hamiltonian cycles in all 2-tiled graphs, thus extending the results of Bodroža-Pantić, Kwong, Doroslovački, and Pantić for \(n = 2\). |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2490396658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2490396658</sourcerecordid><originalsourceid>FETCH-proquest_journals_24903966583</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQdc4vzSvJzEtX8EjMzcwpyc_LTMxTSK5MzkktVsjMUzDSLcnMSU1RSC9KLMgo5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMTSwNjSzMzUwtj4lQBAKRhMcU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2490396658</pqid></control><display><type>article</type><title>Counting Hamiltonian cycles in 2-tiled graphs</title><source>Free E- Journals</source><creator>Kalamar, Alen Vegi ; Žerak, Tadej ; Drago Bokal</creator><creatorcontrib>Kalamar, Alen Vegi ; Žerak, Tadej ; Drago Bokal</creatorcontrib><description>In 1930, Kuratowski showed that \(K_{3,3}\) and \(K_5\) are the only two minor-minimal non-planar graphs. Robertson and Seymour extended finiteness of the set of forbidden minors for any surface. Šir\'{a}ň and Kochol showed that there are infinitely many \(k\)-crossing-critical graphs for any \(k\ge 2\), even if restricted to simple \(3\)-connected graphs. Recently, \(2\)-crossing-critical graphs have been completely characterized by Bokal, Oporowski, Richter, and Salazar. We present a simplified description of large 2-crossing-critical graphs and use this simplification to count Hamiltonian cycles in such graphs. We generalize this approach to an algorithm counting Hamiltonian cycles in all 2-tiled graphs, thus extending the results of Bodroža-Pantić, Kwong, Doroslovački, and Pantić for \(n = 2\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Graphs</subject><ispartof>arXiv.org, 2021-02</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Kalamar, Alen Vegi</creatorcontrib><creatorcontrib>Žerak, Tadej</creatorcontrib><creatorcontrib>Drago Bokal</creatorcontrib><title>Counting Hamiltonian cycles in 2-tiled graphs</title><title>arXiv.org</title><description>In 1930, Kuratowski showed that \(K_{3,3}\) and \(K_5\) are the only two minor-minimal non-planar graphs. Robertson and Seymour extended finiteness of the set of forbidden minors for any surface. Šir\'{a}ň and Kochol showed that there are infinitely many \(k\)-crossing-critical graphs for any \(k\ge 2\), even if restricted to simple \(3\)-connected graphs. Recently, \(2\)-crossing-critical graphs have been completely characterized by Bokal, Oporowski, Richter, and Salazar. We present a simplified description of large 2-crossing-critical graphs and use this simplification to count Hamiltonian cycles in such graphs. We generalize this approach to an algorithm counting Hamiltonian cycles in all 2-tiled graphs, thus extending the results of Bodroža-Pantić, Kwong, Doroslovački, and Pantić for \(n = 2\).</description><subject>Algorithms</subject><subject>Graphs</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQdc4vzSvJzEtX8EjMzcwpyc_LTMxTSK5MzkktVsjMUzDSLcnMSU1RSC9KLMgo5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMTSwNjSzMzUwtj4lQBAKRhMcU</recordid><startdate>20210216</startdate><enddate>20210216</enddate><creator>Kalamar, Alen Vegi</creator><creator>Žerak, Tadej</creator><creator>Drago Bokal</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210216</creationdate><title>Counting Hamiltonian cycles in 2-tiled graphs</title><author>Kalamar, Alen Vegi ; Žerak, Tadej ; Drago Bokal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24903966583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Graphs</topic><toplevel>online_resources</toplevel><creatorcontrib>Kalamar, Alen Vegi</creatorcontrib><creatorcontrib>Žerak, Tadej</creatorcontrib><creatorcontrib>Drago Bokal</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kalamar, Alen Vegi</au><au>Žerak, Tadej</au><au>Drago Bokal</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Counting Hamiltonian cycles in 2-tiled graphs</atitle><jtitle>arXiv.org</jtitle><date>2021-02-16</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>In 1930, Kuratowski showed that \(K_{3,3}\) and \(K_5\) are the only two minor-minimal non-planar graphs. Robertson and Seymour extended finiteness of the set of forbidden minors for any surface. Šir\'{a}ň and Kochol showed that there are infinitely many \(k\)-crossing-critical graphs for any \(k\ge 2\), even if restricted to simple \(3\)-connected graphs. Recently, \(2\)-crossing-critical graphs have been completely characterized by Bokal, Oporowski, Richter, and Salazar. We present a simplified description of large 2-crossing-critical graphs and use this simplification to count Hamiltonian cycles in such graphs. We generalize this approach to an algorithm counting Hamiltonian cycles in all 2-tiled graphs, thus extending the results of Bodroža-Pantić, Kwong, Doroslovački, and Pantić for \(n = 2\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2490396658 |
source | Free E- Journals |
subjects | Algorithms Graphs |
title | Counting Hamiltonian cycles in 2-tiled graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A01%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Counting%20Hamiltonian%20cycles%20in%202-tiled%20graphs&rft.jtitle=arXiv.org&rft.au=Kalamar,%20Alen%20Vegi&rft.date=2021-02-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2490396658%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2490396658&rft_id=info:pmid/&rfr_iscdi=true |