Counting Hamiltonian cycles in 2-tiled graphs

In 1930, Kuratowski showed that \(K_{3,3}\) and \(K_5\) are the only two minor-minimal non-planar graphs. Robertson and Seymour extended finiteness of the set of forbidden minors for any surface. Šir\'{a}ň and Kochol showed that there are infinitely many \(k\)-crossing-critical graphs for any \...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-02
Hauptverfasser: Kalamar, Alen Vegi, Žerak, Tadej, Drago Bokal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In 1930, Kuratowski showed that \(K_{3,3}\) and \(K_5\) are the only two minor-minimal non-planar graphs. Robertson and Seymour extended finiteness of the set of forbidden minors for any surface. Šir\'{a}ň and Kochol showed that there are infinitely many \(k\)-crossing-critical graphs for any \(k\ge 2\), even if restricted to simple \(3\)-connected graphs. Recently, \(2\)-crossing-critical graphs have been completely characterized by Bokal, Oporowski, Richter, and Salazar. We present a simplified description of large 2-crossing-critical graphs and use this simplification to count Hamiltonian cycles in such graphs. We generalize this approach to an algorithm counting Hamiltonian cycles in all 2-tiled graphs, thus extending the results of Bodroža-Pantić, Kwong, Doroslovački, and Pantić for \(n = 2\).
ISSN:2331-8422