Ti–C bonds reinforced TiO2@C nanocomposite Na-ion battery electrodes by fluidized-bed plasma-enhanced chemical vapor deposition

Carbon coatings hold great promise for next-generation non-conductive energy storage nanomaterials. However, simplicity, stable, uniformity and high-performance remain unresolved issues. Here, unique synergy of the fluidized bed reactor with plasmas enables highly-effective, single-step fluidized-be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbon (New York) 2021-01, Vol.171, p.524-531
Hauptverfasser: Yao, Shuyue, Ma, Yujie, Xu, Tianhao, Wang, Zhongyue, Lv, Peng, Zheng, Jiajin, Ma, Chen, Yu, Kehan, Wei, Wei, Ostrikov, Kostya (Ken)
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Carbon coatings hold great promise for next-generation non-conductive energy storage nanomaterials. However, simplicity, stable, uniformity and high-performance remain unresolved issues. Here, unique synergy of the fluidized bed reactor with plasmas enables highly-effective, single-step fluidized-bed plasma-enhanced chemical vapor deposition (FB-PECVD) of uniform, low-temperature carbon coatings on TiO2 nano-powder (TiO2@C). Plasma-specific effects induce the formation of new phases that are beneficial for energy storage. The 6 nm carbon layer is grown within only 10 min, while the TiO2 maintains its anatase phase. The unique plasma conditions make it possible to form Ti–C bonds at the Ti/C interface at much lower temperatures than achievable otherwise. The electronic transport at the interface and structural stability are thus greatly improved. Consequently, TiO2@C shows excellent electrochemical performances as a negative electrode of sodium ion battery, such as specific discharge capacity of 290.2 mA h g−1 at 50 mA g−1 and very stable long-term cyclability (101.2% capacity retention over 300 cycles at 4000 mA g−1). Our results show that FB-PECVD is not only a versatile method for bond-reinforced interface nanoparticle coating with carbon, but also provide a new strategy for designing hybrid-phase electrochemically active nanocomposite materials. [Display omitted] •A fluidized-bed plasma-enhanced chemical vapor deposition (FB-PECVD) is proposed.•Uniform carbon layer is coated on TiO2 nanoparticles through a one-step reaction.•Ti–C bonds are formed at the Ti/C interface.•C@TiO2 as a negative electrode of SIB shows excellent electrochemical performances.
ISSN:0008-6223
1873-3891
DOI:10.1016/j.carbon.2020.09.023