Efficient Visible‐Light Driven Photothermal Conversion of CO2 to Methane by Nickel Nanoparticles Supported on Barium Titanate
Solar‐driven methanation represents a potentially cost‐efficient and environmentally friendly route for the direct hydrogenation of CO2. Recently, photothermal catalysis, which involves the combination of both photochemical and thermochemical pathways, has emerged as a promising strategy for the pro...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2021-02, Vol.31 (8), p.n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Solar‐driven methanation represents a potentially cost‐efficient and environmentally friendly route for the direct hydrogenation of CO2. Recently, photothermal catalysis, which involves the combination of both photochemical and thermochemical pathways, has emerged as a promising strategy for the production of solar fuels. For a photothermal catalyst to efficiently convert CO2 under illumination, in the absence of external heating, effective light harvesting, an excellent photothermal conversion and efficient active sites are required. Here, a new composite catalyst consisting of Ni nanoparticles supported on barium titanate that, under optimal reaction conditions, is able to hydrogenate CO2 to CH4 at nearly 100% selectivity with production rates as high as 103.7 mmol g–1 h–1 under both UV–visible and visible irradiation (production rate: 40.3 mmol g−1 h–1) is reported. Mechanistic studies suggest that reaction mostly proceeds through a nonthermal hot‐electron‐driven pathway, with a smaller thermal contribution.
The present paper reports complete photothermal CO2 conversion to methane using a new composite catalyst based on Ni nanoparticles supported on barium titanate. Under optimal conditions, the photocatalyst displays an outstanding CH4 production rate of 103.7 mmol g−1 h−1 derived from its excellent photothermal performance and light harvesting properties. |
---|---|
ISSN: | 1616-301X 1616-3028 |
DOI: | 10.1002/adfm.202008244 |