Susceptibility mapping of groundwater salinity using machine learning models

Increasing groundwater salinity has recently raised severe environmental and health concerns around the world. Advancement of the novel methods for spatial salinity modeling and prediction would be essential for effective management of the resources and planning mitigation policies. The current rese...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international 2021-03, Vol.28 (9), p.10804-10817
Hauptverfasser: Mosavi, Amirhosein, Sajedi Hosseini, Farzaneh, Choubin, Bahram, Taromideh, Fereshteh, Ghodsi, Marzieh, Nazari, Bijan, Dineva, Adrienn A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Increasing groundwater salinity has recently raised severe environmental and health concerns around the world. Advancement of the novel methods for spatial salinity modeling and prediction would be essential for effective management of the resources and planning mitigation policies. The current research presents the application of machine learning (ML) models in groundwater salinity mapping based on the dichotomous predictions. The groundwater salinity is predicted using the essential factors (i.e., identified by the simulated annealing feature selection methodology) through k-fold cross-validation methodology. Six ML models, namely, flexible discriminant analysis (FDA), mixture discriminant analysis (MAD), boosted regression tree (BRT), multivariate adaptive regression spline (MARS), random forest (RF), support vector machine (SVM), were employed to groundwater salinity mapping. The results of the modeling indicated that the SVM model had superior performance than other models. Variables of soil order, groundwater withdrawal, precipitation, land use, and elevation had the most contribute to groundwater salinity mapping. Results highlighted that the southern parts of the region and some parts in the north, northeast, and west have a high groundwater salinity, in which these areas are mostly matched with soil order of Entisols, bareland areas, and low elevations.
ISSN:0944-1344
1614-7499
DOI:10.1007/s11356-020-11319-5