Mineralogical and microstructural alterations in a portland cement paste after an accelerated decalcification process
Cement paste leaching and concomitant decalcification is a common cause of concrete structure deterioration. Such alterations entail microstructural changes that condition concrete durability. This study analysed those changes in cement pastes exposed to accelerated decalcification, layer-by-layer,...
Gespeichert in:
Veröffentlicht in: | Cement and concrete research 2021-02, Vol.140, p.106312, Article 106312 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cement paste leaching and concomitant decalcification is a common cause of concrete structure deterioration. Such alterations entail microstructural changes that condition concrete durability. This study analysed those changes in cement pastes exposed to accelerated decalcification, layer-by-layer, from the surface in contact with the leaching agent, 6 M NH4NO3, to the unaltered area. The microstructural changes were analysed with BSEM, MIP and BET whilst the mineralogical and nanostructural alterations in each layer were assessed with XRD, FTIR, 29Si and 27Al MAS NMR and BSD. Decalcification affected not only portlandite and CSH gel, but also the anhydrous clinker and ettringite, inducing major micro- and nano-structural changes, particularly in the two layers closest to the leaching agent. CSH gel decalcification was more intense in the outer layers where long chain gels co-existed with silicon rich gels. BDS, in turn, revealed differences between the amount of bound water in the surface interfacing with the leaching agent and in the leaching front. More specifically, larger numbers of water molecules were tightly bound to silanol groups in the outer, whereas hydroxyl group distribution was more orderly in the inner layers.
[Display omitted] |
---|---|
ISSN: | 0008-8846 1873-3948 |
DOI: | 10.1016/j.cemconres.2020.106312 |