Using Utility Outage Statistics to Quantify Improvements in Bulk Power System Resilience

•A new high-level statistical approach to quantify all phases of resilience•Driven by utility data that describes the outcomes of resilience processes•Samples from the statistical modeling to get resilience metrics and risk•Assesses resilience impacts of variable PV, storage, and load•Distributed PV...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electric power systems research 2020-12, Vol.189, p.106676, Article 106676
Hauptverfasser: Kelly-Gorham, Molly Rose, Hines, Paul D.H., Zhou, Kai, Dobson, Ian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•A new high-level statistical approach to quantify all phases of resilience•Driven by utility data that describes the outcomes of resilience processes•Samples from the statistical modeling to get resilience metrics and risk•Assesses resilience impacts of variable PV, storage, and load•Distributed PV and storagen enhance resilience; PV impact varies with weather CRISP is a new high-level statistical approach driven by utility data to quantify resilience in electric power transmission networks. We extend CRISP to model energy storage, photovoltaics, and generator outages, to account for the spatial spread of cascading outages, and to optimize the restoration process. Illustrative results show how CRISP can measure the resilience impact of combinations of energy storage and photovoltaics on a power system.
ISSN:0378-7796
1873-2046
DOI:10.1016/j.epsr.2020.106676