Distortion-Aware Monocular Depth Estimation for Omnidirectional Images

Image distortion is a main challenge for tasks on panoramas. In this work, we propose a Distortion-Aware Monocular Omnidirectional (DAMO) network to estimate dense depth maps from indoor panoramas. First, we introduce a distortion-aware module to extract semantic features from omnidirectional images...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2021, Vol.28, p.334-338
Hauptverfasser: Chen, Hong-Xiang, Li, Kunhong, Fu, Zhiheng, Liu, Mengyi, Chen, Zonghao, Guo, Yulan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Image distortion is a main challenge for tasks on panoramas. In this work, we propose a Distortion-Aware Monocular Omnidirectional (DAMO) network to estimate dense depth maps from indoor panoramas. First, we introduce a distortion-aware module to extract semantic features from omnidirectional images. Specifically, we exploit deformable convolution to adjust its sampling grids to geometric distortions on panoramas. We also utilize a strip pooling module to sample against horizontal distortion introduced by inverse gnomonic projection. Second, we introduce a plug-and-play spherical-aware weight matrix for our loss function to handle the uneven distribution of areas projected from a sphere. Experiments on the 360D dataset show that the proposed method can effectively extract semantic features from distorted panoramas and alleviate the supervision bias caused by distortion. It achieves the state-of-the-art performance on the 360D dataset with high efficiency.
ISSN:1070-9908
1558-2361
DOI:10.1109/LSP.2021.3050712