Mineral Chemistry and Reaction Textures of Calc-silicate Rocks of the Lunavada Region, SAMB, NE Gujarat

Calc-silicate rocks occurring in and around Lunavada town belong to the Kadana Formation of the Lunavada Group of the Aravalli Supergroup. These rocks are embedded within pelitic schists in the form of sporadically distributed lensoidal bodies and are surrounded by quartzitic ridges. Rocks of the Ka...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Geological Society of India 2021-02, Vol.97 (2), p.151-157
Hauptverfasser: Akolkar, Gayatri, Limaye, M. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Calc-silicate rocks occurring in and around Lunavada town belong to the Kadana Formation of the Lunavada Group of the Aravalli Supergroup. These rocks are embedded within pelitic schists in the form of sporadically distributed lensoidal bodies and are surrounded by quartzitic ridges. Rocks of the Kadana Formation and its surrounding area have experienced intrusive event named as ‘Godhra granite’ which occupy the SW part of this area. Some prominent field characteristics shown by these calc-silicates include fine to medium grained size, dark grey colour, unoriented/star shaped amphibole needles and maculose structure. These rocks have contact metamorphic textural features and the typical mineral assemblage viz., Act +Di + Qtz + Ttn+ Cal ± Mc ± Bt ± Pl ± Ep ± Scp ± Chl with minor proportion of apatite, zircon and opaques. EPMA studies revealed that the Ca-amphibole composition of these rocks ranges from magnesio-hornblende to actinolite whereas the clinopyroxene is salitic to diopsidic and the mica is found to be phlogopitic biotite. Certain prograde and retrograde reactions textures present within these rocks have been interpreted, for e.g. the development of diopside (salite) from ankeritic composition which is then retrogressed and actinolite appeared, prograde reaction leading to the formation of titanite from ilmenite and calcite and breakdown of scapolite into calcite and quartz with plagioclase lacking co-existence with these scapolites, indicating retrogression. Mineral assemblage and mineral chemistry data interpretation points towards the calcareous sandstone or marl as a probable protolith having impure calcareous composition, moreover, field characteristics and reaction textures observed give indication that the protolith might had passed through the contact metamorphic event to give rise to the present day calc-silicates.
ISSN:0016-7622
0974-6889
DOI:10.1007/s12594-021-1646-x