On the Existence of Non-CSC Extremal Kähler Metrics with Finite Singularities on S2

We often call an extremal Kähler metric with finite singularities on a compact Riemann surface an HCMU (the Hessian of the Curvature of the Metric is Umbilical) metric. In this paper, we consider the problem: suppose α 1 , α 2 , … , α N are N ≥ 4 nonnegative real numbers with α j ≥ 2 ( 1 ≤ j ≤ J ≤ N...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of geometric analysis 2021, Vol.31 (2), p.1555-1567
Hauptverfasser: Wei, Zhiqiang, Wu, Yingyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1567
container_issue 2
container_start_page 1555
container_title The Journal of geometric analysis
container_volume 31
creator Wei, Zhiqiang
Wu, Yingyi
description We often call an extremal Kähler metric with finite singularities on a compact Riemann surface an HCMU (the Hessian of the Curvature of the Metric is Umbilical) metric. In this paper, we consider the problem: suppose α 1 , α 2 , … , α N are N ≥ 4 nonnegative real numbers with α j ≥ 2 ( 1 ≤ j ≤ J ≤ N - 3 ) being integers such that ∑ j = 1 J α j + 2 - N ≥ 0 , given any J points p 1 , … , p J on S 2 \ { 0 , ∞ } , whether there exists a non-CSC conformal HCMU metric g with singular angles 2 π α 1 , … , 2 π α N , which belongs to the first class (see Definition  1.1 ) such that p 1 , … , p J are all saddle points of scalar curvature R of g and 0 , ∞ are extremal point of R . We will give a sufficient condition when R has only one saddle point. As its application, we prove that when the number of the singularities is 4, Obstruction Theorem is also a sufficient condition for the existence of a non-CSC conformal HCMU metric on S 2 .
doi_str_mv 10.1007/s12220-019-00315-y
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2489026021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2489026021</sourcerecordid><originalsourceid>FETCH-LOGICAL-p72y-12868cafc7f5d0b284789a0d394c5c7933d6639ce3db85a5570bc28a45d9aacf3</originalsourceid><addsrcrecordid>eNpFkEFOwzAQRS0EEqVwAVaWWBvGdmzHSxS1gCh00S7YRa7jUFchKbYryH24CRcjpUisZubraWb0ELqkcE0B1E2kjDEgQDUB4FSQ_giNqBD7kb0cDz0IIFIzeYrOYtwAZJJnaoSW8xantcOTTx-Ta63DXY2fu5YUi2IIU3BvpsGP31_rxgX85FLwNuIPn9Z46lufHF749nXXmOCTdxF3LV6wc3RSmya6i786RsvpZFnck9n87qG4nZGtYj2hLJe5NbVVtahgxfJM5dpAxXVmhVWa80pKrq3j1SoXRggFK8tyk4lKG2NrPkZXh7Xb0L3vXEzlptuFdrhYsizXwCQwOlD8QMVtGF514Z-iUO7tlQd75WCv_LVX9vwHSBdipQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2489026021</pqid></control><display><type>article</type><title>On the Existence of Non-CSC Extremal Kähler Metrics with Finite Singularities on S2</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wei, Zhiqiang ; Wu, Yingyi</creator><creatorcontrib>Wei, Zhiqiang ; Wu, Yingyi</creatorcontrib><description>We often call an extremal Kähler metric with finite singularities on a compact Riemann surface an HCMU (the Hessian of the Curvature of the Metric is Umbilical) metric. In this paper, we consider the problem: suppose α 1 , α 2 , … , α N are N ≥ 4 nonnegative real numbers with α j ≥ 2 ( 1 ≤ j ≤ J ≤ N - 3 ) being integers such that ∑ j = 1 J α j + 2 - N ≥ 0 , given any J points p 1 , … , p J on S 2 \ { 0 , ∞ } , whether there exists a non-CSC conformal HCMU metric g with singular angles 2 π α 1 , … , 2 π α N , which belongs to the first class (see Definition  1.1 ) such that p 1 , … , p J are all saddle points of scalar curvature R of g and 0 , ∞ are extremal point of R . We will give a sufficient condition when R has only one saddle point. As its application, we prove that when the number of the singularities is 4, Obstruction Theorem is also a sufficient condition for the existence of a non-CSC conformal HCMU metric on S 2 .</description><identifier>ISSN: 1050-6926</identifier><identifier>EISSN: 1559-002X</identifier><identifier>DOI: 10.1007/s12220-019-00315-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Convex and Discrete Geometry ; Curvature ; Differential Geometry ; Dynamical Systems and Ergodic Theory ; Existence theorems ; Fourier Analysis ; Geometry ; Global Analysis and Analysis on Manifolds ; Mathematics ; Mathematics and Statistics ; Real numbers ; Riemann surfaces ; Saddle points ; Singularity (mathematics)</subject><ispartof>The Journal of geometric analysis, 2021, Vol.31 (2), p.1555-1567</ispartof><rights>Mathematica Josephina, Inc. 2019</rights><rights>Mathematica Josephina, Inc. 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0991-9825</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12220-019-00315-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12220-019-00315-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Wei, Zhiqiang</creatorcontrib><creatorcontrib>Wu, Yingyi</creatorcontrib><title>On the Existence of Non-CSC Extremal Kähler Metrics with Finite Singularities on S2</title><title>The Journal of geometric analysis</title><addtitle>J Geom Anal</addtitle><description>We often call an extremal Kähler metric with finite singularities on a compact Riemann surface an HCMU (the Hessian of the Curvature of the Metric is Umbilical) metric. In this paper, we consider the problem: suppose α 1 , α 2 , … , α N are N ≥ 4 nonnegative real numbers with α j ≥ 2 ( 1 ≤ j ≤ J ≤ N - 3 ) being integers such that ∑ j = 1 J α j + 2 - N ≥ 0 , given any J points p 1 , … , p J on S 2 \ { 0 , ∞ } , whether there exists a non-CSC conformal HCMU metric g with singular angles 2 π α 1 , … , 2 π α N , which belongs to the first class (see Definition  1.1 ) such that p 1 , … , p J are all saddle points of scalar curvature R of g and 0 , ∞ are extremal point of R . We will give a sufficient condition when R has only one saddle point. As its application, we prove that when the number of the singularities is 4, Obstruction Theorem is also a sufficient condition for the existence of a non-CSC conformal HCMU metric on S 2 .</description><subject>Abstract Harmonic Analysis</subject><subject>Convex and Discrete Geometry</subject><subject>Curvature</subject><subject>Differential Geometry</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Existence theorems</subject><subject>Fourier Analysis</subject><subject>Geometry</subject><subject>Global Analysis and Analysis on Manifolds</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Real numbers</subject><subject>Riemann surfaces</subject><subject>Saddle points</subject><subject>Singularity (mathematics)</subject><issn>1050-6926</issn><issn>1559-002X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpFkEFOwzAQRS0EEqVwAVaWWBvGdmzHSxS1gCh00S7YRa7jUFchKbYryH24CRcjpUisZubraWb0ELqkcE0B1E2kjDEgQDUB4FSQ_giNqBD7kb0cDz0IIFIzeYrOYtwAZJJnaoSW8xantcOTTx-Ta63DXY2fu5YUi2IIU3BvpsGP31_rxgX85FLwNuIPn9Z46lufHF749nXXmOCTdxF3LV6wc3RSmya6i786RsvpZFnck9n87qG4nZGtYj2hLJe5NbVVtahgxfJM5dpAxXVmhVWa80pKrq3j1SoXRggFK8tyk4lKG2NrPkZXh7Xb0L3vXEzlptuFdrhYsizXwCQwOlD8QMVtGF514Z-iUO7tlQd75WCv_LVX9vwHSBdipQ</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Wei, Zhiqiang</creator><creator>Wu, Yingyi</creator><general>Springer US</general><general>Springer Nature B.V</general><scope/><orcidid>https://orcid.org/0000-0003-0991-9825</orcidid></search><sort><creationdate>2021</creationdate><title>On the Existence of Non-CSC Extremal Kähler Metrics with Finite Singularities on S2</title><author>Wei, Zhiqiang ; Wu, Yingyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p72y-12868cafc7f5d0b284789a0d394c5c7933d6639ce3db85a5570bc28a45d9aacf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Convex and Discrete Geometry</topic><topic>Curvature</topic><topic>Differential Geometry</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Existence theorems</topic><topic>Fourier Analysis</topic><topic>Geometry</topic><topic>Global Analysis and Analysis on Manifolds</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Real numbers</topic><topic>Riemann surfaces</topic><topic>Saddle points</topic><topic>Singularity (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Zhiqiang</creatorcontrib><creatorcontrib>Wu, Yingyi</creatorcontrib><jtitle>The Journal of geometric analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Zhiqiang</au><au>Wu, Yingyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Existence of Non-CSC Extremal Kähler Metrics with Finite Singularities on S2</atitle><jtitle>The Journal of geometric analysis</jtitle><stitle>J Geom Anal</stitle><date>2021</date><risdate>2021</risdate><volume>31</volume><issue>2</issue><spage>1555</spage><epage>1567</epage><pages>1555-1567</pages><issn>1050-6926</issn><eissn>1559-002X</eissn><abstract>We often call an extremal Kähler metric with finite singularities on a compact Riemann surface an HCMU (the Hessian of the Curvature of the Metric is Umbilical) metric. In this paper, we consider the problem: suppose α 1 , α 2 , … , α N are N ≥ 4 nonnegative real numbers with α j ≥ 2 ( 1 ≤ j ≤ J ≤ N - 3 ) being integers such that ∑ j = 1 J α j + 2 - N ≥ 0 , given any J points p 1 , … , p J on S 2 \ { 0 , ∞ } , whether there exists a non-CSC conformal HCMU metric g with singular angles 2 π α 1 , … , 2 π α N , which belongs to the first class (see Definition  1.1 ) such that p 1 , … , p J are all saddle points of scalar curvature R of g and 0 , ∞ are extremal point of R . We will give a sufficient condition when R has only one saddle point. As its application, we prove that when the number of the singularities is 4, Obstruction Theorem is also a sufficient condition for the existence of a non-CSC conformal HCMU metric on S 2 .</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12220-019-00315-y</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0991-9825</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1050-6926
ispartof The Journal of geometric analysis, 2021, Vol.31 (2), p.1555-1567
issn 1050-6926
1559-002X
language eng
recordid cdi_proquest_journals_2489026021
source SpringerLink Journals - AutoHoldings
subjects Abstract Harmonic Analysis
Convex and Discrete Geometry
Curvature
Differential Geometry
Dynamical Systems and Ergodic Theory
Existence theorems
Fourier Analysis
Geometry
Global Analysis and Analysis on Manifolds
Mathematics
Mathematics and Statistics
Real numbers
Riemann surfaces
Saddle points
Singularity (mathematics)
title On the Existence of Non-CSC Extremal Kähler Metrics with Finite Singularities on S2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T03%3A39%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Existence%20of%20Non-CSC%20Extremal%20K%C3%A4hler%20Metrics%20with%20Finite%20Singularities%20on%20S2&rft.jtitle=The%20Journal%20of%20geometric%20analysis&rft.au=Wei,%20Zhiqiang&rft.date=2021&rft.volume=31&rft.issue=2&rft.spage=1555&rft.epage=1567&rft.pages=1555-1567&rft.issn=1050-6926&rft.eissn=1559-002X&rft_id=info:doi/10.1007/s12220-019-00315-y&rft_dat=%3Cproquest_sprin%3E2489026021%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2489026021&rft_id=info:pmid/&rfr_iscdi=true