On the Existence of Non-CSC Extremal Kähler Metrics with Finite Singularities on S2
We often call an extremal Kähler metric with finite singularities on a compact Riemann surface an HCMU (the Hessian of the Curvature of the Metric is Umbilical) metric. In this paper, we consider the problem: suppose α 1 , α 2 , … , α N are N ≥ 4 nonnegative real numbers with α j ≥ 2 ( 1 ≤ j ≤ J ≤ N...
Gespeichert in:
Veröffentlicht in: | The Journal of geometric analysis 2021, Vol.31 (2), p.1555-1567 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1567 |
---|---|
container_issue | 2 |
container_start_page | 1555 |
container_title | The Journal of geometric analysis |
container_volume | 31 |
creator | Wei, Zhiqiang Wu, Yingyi |
description | We often call an extremal Kähler metric with finite singularities on a compact Riemann surface an HCMU (the Hessian of the Curvature of the Metric is Umbilical) metric. In this paper, we consider the problem: suppose
α
1
,
α
2
,
…
,
α
N
are
N
≥
4
nonnegative real numbers with
α
j
≥
2
(
1
≤
j
≤
J
≤
N
-
3
)
being integers such that
∑
j
=
1
J
α
j
+
2
-
N
≥
0
,
given any
J
points
p
1
,
…
,
p
J
on
S
2
\
{
0
,
∞
}
, whether there exists a non-CSC conformal HCMU metric
g
with singular angles
2
π
α
1
,
…
,
2
π
α
N
, which belongs to the first class (see Definition
1.1
) such that
p
1
,
…
,
p
J
are all saddle points of scalar curvature
R
of
g
and
0
,
∞
are extremal point of
R
. We will give a sufficient condition when
R
has only one saddle point. As its application, we prove that when the number of the singularities is 4, Obstruction Theorem is also a sufficient condition for the existence of a non-CSC conformal HCMU metric on
S
2
. |
doi_str_mv | 10.1007/s12220-019-00315-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2489026021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2489026021</sourcerecordid><originalsourceid>FETCH-LOGICAL-p72y-12868cafc7f5d0b284789a0d394c5c7933d6639ce3db85a5570bc28a45d9aacf3</originalsourceid><addsrcrecordid>eNpFkEFOwzAQRS0EEqVwAVaWWBvGdmzHSxS1gCh00S7YRa7jUFchKbYryH24CRcjpUisZubraWb0ELqkcE0B1E2kjDEgQDUB4FSQ_giNqBD7kb0cDz0IIFIzeYrOYtwAZJJnaoSW8xantcOTTx-Ta63DXY2fu5YUi2IIU3BvpsGP31_rxgX85FLwNuIPn9Z46lufHF749nXXmOCTdxF3LV6wc3RSmya6i786RsvpZFnck9n87qG4nZGtYj2hLJe5NbVVtahgxfJM5dpAxXVmhVWa80pKrq3j1SoXRggFK8tyk4lKG2NrPkZXh7Xb0L3vXEzlptuFdrhYsizXwCQwOlD8QMVtGF514Z-iUO7tlQd75WCv_LVX9vwHSBdipQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2489026021</pqid></control><display><type>article</type><title>On the Existence of Non-CSC Extremal Kähler Metrics with Finite Singularities on S2</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wei, Zhiqiang ; Wu, Yingyi</creator><creatorcontrib>Wei, Zhiqiang ; Wu, Yingyi</creatorcontrib><description>We often call an extremal Kähler metric with finite singularities on a compact Riemann surface an HCMU (the Hessian of the Curvature of the Metric is Umbilical) metric. In this paper, we consider the problem: suppose
α
1
,
α
2
,
…
,
α
N
are
N
≥
4
nonnegative real numbers with
α
j
≥
2
(
1
≤
j
≤
J
≤
N
-
3
)
being integers such that
∑
j
=
1
J
α
j
+
2
-
N
≥
0
,
given any
J
points
p
1
,
…
,
p
J
on
S
2
\
{
0
,
∞
}
, whether there exists a non-CSC conformal HCMU metric
g
with singular angles
2
π
α
1
,
…
,
2
π
α
N
, which belongs to the first class (see Definition
1.1
) such that
p
1
,
…
,
p
J
are all saddle points of scalar curvature
R
of
g
and
0
,
∞
are extremal point of
R
. We will give a sufficient condition when
R
has only one saddle point. As its application, we prove that when the number of the singularities is 4, Obstruction Theorem is also a sufficient condition for the existence of a non-CSC conformal HCMU metric on
S
2
.</description><identifier>ISSN: 1050-6926</identifier><identifier>EISSN: 1559-002X</identifier><identifier>DOI: 10.1007/s12220-019-00315-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Convex and Discrete Geometry ; Curvature ; Differential Geometry ; Dynamical Systems and Ergodic Theory ; Existence theorems ; Fourier Analysis ; Geometry ; Global Analysis and Analysis on Manifolds ; Mathematics ; Mathematics and Statistics ; Real numbers ; Riemann surfaces ; Saddle points ; Singularity (mathematics)</subject><ispartof>The Journal of geometric analysis, 2021, Vol.31 (2), p.1555-1567</ispartof><rights>Mathematica Josephina, Inc. 2019</rights><rights>Mathematica Josephina, Inc. 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0991-9825</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12220-019-00315-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12220-019-00315-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Wei, Zhiqiang</creatorcontrib><creatorcontrib>Wu, Yingyi</creatorcontrib><title>On the Existence of Non-CSC Extremal Kähler Metrics with Finite Singularities on S2</title><title>The Journal of geometric analysis</title><addtitle>J Geom Anal</addtitle><description>We often call an extremal Kähler metric with finite singularities on a compact Riemann surface an HCMU (the Hessian of the Curvature of the Metric is Umbilical) metric. In this paper, we consider the problem: suppose
α
1
,
α
2
,
…
,
α
N
are
N
≥
4
nonnegative real numbers with
α
j
≥
2
(
1
≤
j
≤
J
≤
N
-
3
)
being integers such that
∑
j
=
1
J
α
j
+
2
-
N
≥
0
,
given any
J
points
p
1
,
…
,
p
J
on
S
2
\
{
0
,
∞
}
, whether there exists a non-CSC conformal HCMU metric
g
with singular angles
2
π
α
1
,
…
,
2
π
α
N
, which belongs to the first class (see Definition
1.1
) such that
p
1
,
…
,
p
J
are all saddle points of scalar curvature
R
of
g
and
0
,
∞
are extremal point of
R
. We will give a sufficient condition when
R
has only one saddle point. As its application, we prove that when the number of the singularities is 4, Obstruction Theorem is also a sufficient condition for the existence of a non-CSC conformal HCMU metric on
S
2
.</description><subject>Abstract Harmonic Analysis</subject><subject>Convex and Discrete Geometry</subject><subject>Curvature</subject><subject>Differential Geometry</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Existence theorems</subject><subject>Fourier Analysis</subject><subject>Geometry</subject><subject>Global Analysis and Analysis on Manifolds</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Real numbers</subject><subject>Riemann surfaces</subject><subject>Saddle points</subject><subject>Singularity (mathematics)</subject><issn>1050-6926</issn><issn>1559-002X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpFkEFOwzAQRS0EEqVwAVaWWBvGdmzHSxS1gCh00S7YRa7jUFchKbYryH24CRcjpUisZubraWb0ELqkcE0B1E2kjDEgQDUB4FSQ_giNqBD7kb0cDz0IIFIzeYrOYtwAZJJnaoSW8xantcOTTx-Ta63DXY2fu5YUi2IIU3BvpsGP31_rxgX85FLwNuIPn9Z46lufHF749nXXmOCTdxF3LV6wc3RSmya6i786RsvpZFnck9n87qG4nZGtYj2hLJe5NbVVtahgxfJM5dpAxXVmhVWa80pKrq3j1SoXRggFK8tyk4lKG2NrPkZXh7Xb0L3vXEzlptuFdrhYsizXwCQwOlD8QMVtGF514Z-iUO7tlQd75WCv_LVX9vwHSBdipQ</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Wei, Zhiqiang</creator><creator>Wu, Yingyi</creator><general>Springer US</general><general>Springer Nature B.V</general><scope/><orcidid>https://orcid.org/0000-0003-0991-9825</orcidid></search><sort><creationdate>2021</creationdate><title>On the Existence of Non-CSC Extremal Kähler Metrics with Finite Singularities on S2</title><author>Wei, Zhiqiang ; Wu, Yingyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p72y-12868cafc7f5d0b284789a0d394c5c7933d6639ce3db85a5570bc28a45d9aacf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Convex and Discrete Geometry</topic><topic>Curvature</topic><topic>Differential Geometry</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Existence theorems</topic><topic>Fourier Analysis</topic><topic>Geometry</topic><topic>Global Analysis and Analysis on Manifolds</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Real numbers</topic><topic>Riemann surfaces</topic><topic>Saddle points</topic><topic>Singularity (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Zhiqiang</creatorcontrib><creatorcontrib>Wu, Yingyi</creatorcontrib><jtitle>The Journal of geometric analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Zhiqiang</au><au>Wu, Yingyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Existence of Non-CSC Extremal Kähler Metrics with Finite Singularities on S2</atitle><jtitle>The Journal of geometric analysis</jtitle><stitle>J Geom Anal</stitle><date>2021</date><risdate>2021</risdate><volume>31</volume><issue>2</issue><spage>1555</spage><epage>1567</epage><pages>1555-1567</pages><issn>1050-6926</issn><eissn>1559-002X</eissn><abstract>We often call an extremal Kähler metric with finite singularities on a compact Riemann surface an HCMU (the Hessian of the Curvature of the Metric is Umbilical) metric. In this paper, we consider the problem: suppose
α
1
,
α
2
,
…
,
α
N
are
N
≥
4
nonnegative real numbers with
α
j
≥
2
(
1
≤
j
≤
J
≤
N
-
3
)
being integers such that
∑
j
=
1
J
α
j
+
2
-
N
≥
0
,
given any
J
points
p
1
,
…
,
p
J
on
S
2
\
{
0
,
∞
}
, whether there exists a non-CSC conformal HCMU metric
g
with singular angles
2
π
α
1
,
…
,
2
π
α
N
, which belongs to the first class (see Definition
1.1
) such that
p
1
,
…
,
p
J
are all saddle points of scalar curvature
R
of
g
and
0
,
∞
are extremal point of
R
. We will give a sufficient condition when
R
has only one saddle point. As its application, we prove that when the number of the singularities is 4, Obstruction Theorem is also a sufficient condition for the existence of a non-CSC conformal HCMU metric on
S
2
.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12220-019-00315-y</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0991-9825</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1050-6926 |
ispartof | The Journal of geometric analysis, 2021, Vol.31 (2), p.1555-1567 |
issn | 1050-6926 1559-002X |
language | eng |
recordid | cdi_proquest_journals_2489026021 |
source | SpringerLink Journals - AutoHoldings |
subjects | Abstract Harmonic Analysis Convex and Discrete Geometry Curvature Differential Geometry Dynamical Systems and Ergodic Theory Existence theorems Fourier Analysis Geometry Global Analysis and Analysis on Manifolds Mathematics Mathematics and Statistics Real numbers Riemann surfaces Saddle points Singularity (mathematics) |
title | On the Existence of Non-CSC Extremal Kähler Metrics with Finite Singularities on S2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T03%3A39%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Existence%20of%20Non-CSC%20Extremal%20K%C3%A4hler%20Metrics%20with%20Finite%20Singularities%20on%20S2&rft.jtitle=The%20Journal%20of%20geometric%20analysis&rft.au=Wei,%20Zhiqiang&rft.date=2021&rft.volume=31&rft.issue=2&rft.spage=1555&rft.epage=1567&rft.pages=1555-1567&rft.issn=1050-6926&rft.eissn=1559-002X&rft_id=info:doi/10.1007/s12220-019-00315-y&rft_dat=%3Cproquest_sprin%3E2489026021%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2489026021&rft_id=info:pmid/&rfr_iscdi=true |