On the Existence of Non-CSC Extremal Kähler Metrics with Finite Singularities on S2
We often call an extremal Kähler metric with finite singularities on a compact Riemann surface an HCMU (the Hessian of the Curvature of the Metric is Umbilical) metric. In this paper, we consider the problem: suppose α 1 , α 2 , … , α N are N ≥ 4 nonnegative real numbers with α j ≥ 2 ( 1 ≤ j ≤ J ≤ N...
Gespeichert in:
Veröffentlicht in: | The Journal of geometric analysis 2021, Vol.31 (2), p.1555-1567 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We often call an extremal Kähler metric with finite singularities on a compact Riemann surface an HCMU (the Hessian of the Curvature of the Metric is Umbilical) metric. In this paper, we consider the problem: suppose
α
1
,
α
2
,
…
,
α
N
are
N
≥
4
nonnegative real numbers with
α
j
≥
2
(
1
≤
j
≤
J
≤
N
-
3
)
being integers such that
∑
j
=
1
J
α
j
+
2
-
N
≥
0
,
given any
J
points
p
1
,
…
,
p
J
on
S
2
\
{
0
,
∞
}
, whether there exists a non-CSC conformal HCMU metric
g
with singular angles
2
π
α
1
,
…
,
2
π
α
N
, which belongs to the first class (see Definition
1.1
) such that
p
1
,
…
,
p
J
are all saddle points of scalar curvature
R
of
g
and
0
,
∞
are extremal point of
R
. We will give a sufficient condition when
R
has only one saddle point. As its application, we prove that when the number of the singularities is 4, Obstruction Theorem is also a sufficient condition for the existence of a non-CSC conformal HCMU metric on
S
2
. |
---|---|
ISSN: | 1050-6926 1559-002X |
DOI: | 10.1007/s12220-019-00315-y |