Connections and \(L_{\infty}\) liftings of semiregularity maps

Let \(E^*\) be a finite complex of locally free sheaves on a complex manifold \(X\). We prove that to every connection of type \((1,0)\) on \(E^*\) it is canonically associated an \(L_{\infty}\) morphism \(g\colon A^{0, *}_X(\mathcal{H}om^*_{O_X}(E^*,E^*))\to \dfrac{A^{*,*}_X}{A^{\ge 2,*}_X}[2]\) th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-05
Hauptverfasser: Lepri, Emma, Manetti, Marco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let \(E^*\) be a finite complex of locally free sheaves on a complex manifold \(X\). We prove that to every connection of type \((1,0)\) on \(E^*\) it is canonically associated an \(L_{\infty}\) morphism \(g\colon A^{0, *}_X(\mathcal{H}om^*_{O_X}(E^*,E^*))\to \dfrac{A^{*,*}_X}{A^{\ge 2,*}_X}[2]\) that lifts the 1-component of Buchweitz-Flenner semiregularity map. An application to deformations of coherent sheaves on projective manifolds is given.
ISSN:2331-8422