Connections and \(L_{\infty}\) liftings of semiregularity maps
Let \(E^*\) be a finite complex of locally free sheaves on a complex manifold \(X\). We prove that to every connection of type \((1,0)\) on \(E^*\) it is canonically associated an \(L_{\infty}\) morphism \(g\colon A^{0, *}_X(\mathcal{H}om^*_{O_X}(E^*,E^*))\to \dfrac{A^{*,*}_X}{A^{\ge 2,*}_X}[2]\) th...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-05 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let \(E^*\) be a finite complex of locally free sheaves on a complex manifold \(X\). We prove that to every connection of type \((1,0)\) on \(E^*\) it is canonically associated an \(L_{\infty}\) morphism \(g\colon A^{0, *}_X(\mathcal{H}om^*_{O_X}(E^*,E^*))\to \dfrac{A^{*,*}_X}{A^{\ge 2,*}_X}[2]\) that lifts the 1-component of Buchweitz-Flenner semiregularity map. An application to deformations of coherent sheaves on projective manifolds is given. |
---|---|
ISSN: | 2331-8422 |