Nonlinear Adaptive Robust Precision Pointing Control of Tank Servo Systems
This paper focuses on the high performance pointing control of tank servo systems with parametric uncertainties and uncertain nonlinearities including nonlinear friction, backlash and structural flexibility. A comprehensive dynamic nonlinear mathematical model of the two-DOF tank servo system is est...
Gespeichert in:
Veröffentlicht in: | IEEE access 2021, Vol.9, p.23385-23397 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 23397 |
---|---|
container_issue | |
container_start_page | 23385 |
container_title | IEEE access |
container_volume | 9 |
creator | Yuan, Shusen Deng, Wenxiang Ge, Yaowen Yao, Jianyong Yang, Guolai |
description | This paper focuses on the high performance pointing control of tank servo systems with parametric uncertainties and uncertain nonlinearities including nonlinear friction, backlash and structural flexibility. A comprehensive dynamic nonlinear mathematical model of the two-DOF tank servo system is established. Specifically, to accurately describe the nonlinear friction characteristics in actual systems, a continuous friction model is employed. Moreover, a hybrid nonlinear model combining structural flexibility and transmission backlash is constructed to characterize the nonlinear characteristics of the backlash and flexible coupling between the input and output shafts of the drive end for the tank servo system. By using the backstepping method, a nonlinear adaptive robust controller is presented. In the controller, the adaptive law is compounded to dispose of parametric uncertainties and a well-designed continuous nonlinear robust control law is developed for the purpose of coping with unmodeled disturbances. The closed-loop system stability analysis indicates that the presented controller achieves an asymptotic tracking performance with parametric uncertainties and ensures the robustness against unmodeled disturbances theoretically. The effectiveness of the proposed control strategy is verified by a large number of comparative simulation results. |
doi_str_mv | 10.1109/ACCESS.2021.3054178 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2488746138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9334984</ieee_id><doaj_id>oai_doaj_org_article_b75fb6e22d684f16a31094d6d99b9fab</doaj_id><sourcerecordid>2488746138</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-b70ba9dce9d52074e38c93cd4851e535667eb38b74e5e0a3630852c8278ccbef3</originalsourceid><addsrcrecordid>eNpNUU1LAzEQXURBqf0FvQQ8t-Z7k2NZ_KiIFlvPIcnOSmrd1GRb8N-7dUWcywxv5r0Z5hXFhOAZIVhfz6vqZrWaUUzJjGHBSalOigtKpJ4yweTpv_q8GOe8wX2oHhLlRfHwFNttaMEmNK_trgsHQC_R7XOHlgl8yCG2aBlD24X2DVWx7VLcotigtW3f0QrSIaLVV-7gI18WZ43dZhj_5lHxenuzru6nj893i2r-OPUcq27qSuysrj3oWlBccmDKa-ZrrgQBwYSUJTimXN8RgC2TDCtBvaKl8t5Bw0bFYtCto92YXQofNn2ZaIP5AWJ6MzZ1wW_BuFI0TgKltVS8IdKy_mG8lrXWTjfW9VpXg9Yuxc895M5s4j61_fmGcqVKLglT_RQbpnyKOSdo_rYSbI4emMEDc_TA_HrQsyYDKwDAH0MzxrXi7Bv8doH-</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2488746138</pqid></control><display><type>article</type><title>Nonlinear Adaptive Robust Precision Pointing Control of Tank Servo Systems</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Directory of Open Access Journals</source><source>IEEE Xplore Open Access Journals</source><creator>Yuan, Shusen ; Deng, Wenxiang ; Ge, Yaowen ; Yao, Jianyong ; Yang, Guolai</creator><creatorcontrib>Yuan, Shusen ; Deng, Wenxiang ; Ge, Yaowen ; Yao, Jianyong ; Yang, Guolai</creatorcontrib><description>This paper focuses on the high performance pointing control of tank servo systems with parametric uncertainties and uncertain nonlinearities including nonlinear friction, backlash and structural flexibility. A comprehensive dynamic nonlinear mathematical model of the two-DOF tank servo system is established. Specifically, to accurately describe the nonlinear friction characteristics in actual systems, a continuous friction model is employed. Moreover, a hybrid nonlinear model combining structural flexibility and transmission backlash is constructed to characterize the nonlinear characteristics of the backlash and flexible coupling between the input and output shafts of the drive end for the tank servo system. By using the backstepping method, a nonlinear adaptive robust controller is presented. In the controller, the adaptive law is compounded to dispose of parametric uncertainties and a well-designed continuous nonlinear robust control law is developed for the purpose of coping with unmodeled disturbances. The closed-loop system stability analysis indicates that the presented controller achieves an asymptotic tracking performance with parametric uncertainties and ensures the robustness against unmodeled disturbances theoretically. The effectiveness of the proposed control strategy is verified by a large number of comparative simulation results.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3054178</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptation models ; Adaptive control ; Azimuth ; Control stability ; Control theory ; Controllers ; Couplings ; Disturbances ; Feedback control ; Flexibility ; Friction ; Mathematical model ; Mathematical models ; Nonlinear control ; Nonlinearity ; Robust control ; Servocontrol ; Servomotors ; Stability analysis ; Systems stability ; Tank servo systems ; Uncertainty</subject><ispartof>IEEE access, 2021, Vol.9, p.23385-23397</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-b70ba9dce9d52074e38c93cd4851e535667eb38b74e5e0a3630852c8278ccbef3</citedby><cites>FETCH-LOGICAL-c408t-b70ba9dce9d52074e38c93cd4851e535667eb38b74e5e0a3630852c8278ccbef3</cites><orcidid>0000-0003-2206-1392 ; 0000-0002-8391-6043</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9334984$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Yuan, Shusen</creatorcontrib><creatorcontrib>Deng, Wenxiang</creatorcontrib><creatorcontrib>Ge, Yaowen</creatorcontrib><creatorcontrib>Yao, Jianyong</creatorcontrib><creatorcontrib>Yang, Guolai</creatorcontrib><title>Nonlinear Adaptive Robust Precision Pointing Control of Tank Servo Systems</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper focuses on the high performance pointing control of tank servo systems with parametric uncertainties and uncertain nonlinearities including nonlinear friction, backlash and structural flexibility. A comprehensive dynamic nonlinear mathematical model of the two-DOF tank servo system is established. Specifically, to accurately describe the nonlinear friction characteristics in actual systems, a continuous friction model is employed. Moreover, a hybrid nonlinear model combining structural flexibility and transmission backlash is constructed to characterize the nonlinear characteristics of the backlash and flexible coupling between the input and output shafts of the drive end for the tank servo system. By using the backstepping method, a nonlinear adaptive robust controller is presented. In the controller, the adaptive law is compounded to dispose of parametric uncertainties and a well-designed continuous nonlinear robust control law is developed for the purpose of coping with unmodeled disturbances. The closed-loop system stability analysis indicates that the presented controller achieves an asymptotic tracking performance with parametric uncertainties and ensures the robustness against unmodeled disturbances theoretically. The effectiveness of the proposed control strategy is verified by a large number of comparative simulation results.</description><subject>Adaptation models</subject><subject>Adaptive control</subject><subject>Azimuth</subject><subject>Control stability</subject><subject>Control theory</subject><subject>Controllers</subject><subject>Couplings</subject><subject>Disturbances</subject><subject>Feedback control</subject><subject>Flexibility</subject><subject>Friction</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Nonlinear control</subject><subject>Nonlinearity</subject><subject>Robust control</subject><subject>Servocontrol</subject><subject>Servomotors</subject><subject>Stability analysis</subject><subject>Systems stability</subject><subject>Tank servo systems</subject><subject>Uncertainty</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LAzEQXURBqf0FvQQ8t-Z7k2NZ_KiIFlvPIcnOSmrd1GRb8N-7dUWcywxv5r0Z5hXFhOAZIVhfz6vqZrWaUUzJjGHBSalOigtKpJ4yweTpv_q8GOe8wX2oHhLlRfHwFNttaMEmNK_trgsHQC_R7XOHlgl8yCG2aBlD24X2DVWx7VLcotigtW3f0QrSIaLVV-7gI18WZ43dZhj_5lHxenuzru6nj893i2r-OPUcq27qSuysrj3oWlBccmDKa-ZrrgQBwYSUJTimXN8RgC2TDCtBvaKl8t5Bw0bFYtCto92YXQofNn2ZaIP5AWJ6MzZ1wW_BuFI0TgKltVS8IdKy_mG8lrXWTjfW9VpXg9Yuxc895M5s4j61_fmGcqVKLglT_RQbpnyKOSdo_rYSbI4emMEDc_TA_HrQsyYDKwDAH0MzxrXi7Bv8doH-</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Yuan, Shusen</creator><creator>Deng, Wenxiang</creator><creator>Ge, Yaowen</creator><creator>Yao, Jianyong</creator><creator>Yang, Guolai</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2206-1392</orcidid><orcidid>https://orcid.org/0000-0002-8391-6043</orcidid></search><sort><creationdate>2021</creationdate><title>Nonlinear Adaptive Robust Precision Pointing Control of Tank Servo Systems</title><author>Yuan, Shusen ; Deng, Wenxiang ; Ge, Yaowen ; Yao, Jianyong ; Yang, Guolai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-b70ba9dce9d52074e38c93cd4851e535667eb38b74e5e0a3630852c8278ccbef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptation models</topic><topic>Adaptive control</topic><topic>Azimuth</topic><topic>Control stability</topic><topic>Control theory</topic><topic>Controllers</topic><topic>Couplings</topic><topic>Disturbances</topic><topic>Feedback control</topic><topic>Flexibility</topic><topic>Friction</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Nonlinear control</topic><topic>Nonlinearity</topic><topic>Robust control</topic><topic>Servocontrol</topic><topic>Servomotors</topic><topic>Stability analysis</topic><topic>Systems stability</topic><topic>Tank servo systems</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Shusen</creatorcontrib><creatorcontrib>Deng, Wenxiang</creatorcontrib><creatorcontrib>Ge, Yaowen</creatorcontrib><creatorcontrib>Yao, Jianyong</creatorcontrib><creatorcontrib>Yang, Guolai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Shusen</au><au>Deng, Wenxiang</au><au>Ge, Yaowen</au><au>Yao, Jianyong</au><au>Yang, Guolai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear Adaptive Robust Precision Pointing Control of Tank Servo Systems</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>23385</spage><epage>23397</epage><pages>23385-23397</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper focuses on the high performance pointing control of tank servo systems with parametric uncertainties and uncertain nonlinearities including nonlinear friction, backlash and structural flexibility. A comprehensive dynamic nonlinear mathematical model of the two-DOF tank servo system is established. Specifically, to accurately describe the nonlinear friction characteristics in actual systems, a continuous friction model is employed. Moreover, a hybrid nonlinear model combining structural flexibility and transmission backlash is constructed to characterize the nonlinear characteristics of the backlash and flexible coupling between the input and output shafts of the drive end for the tank servo system. By using the backstepping method, a nonlinear adaptive robust controller is presented. In the controller, the adaptive law is compounded to dispose of parametric uncertainties and a well-designed continuous nonlinear robust control law is developed for the purpose of coping with unmodeled disturbances. The closed-loop system stability analysis indicates that the presented controller achieves an asymptotic tracking performance with parametric uncertainties and ensures the robustness against unmodeled disturbances theoretically. The effectiveness of the proposed control strategy is verified by a large number of comparative simulation results.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3054178</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2206-1392</orcidid><orcidid>https://orcid.org/0000-0002-8391-6043</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2021, Vol.9, p.23385-23397 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2488746138 |
source | EZB-FREE-00999 freely available EZB journals; Directory of Open Access Journals; IEEE Xplore Open Access Journals |
subjects | Adaptation models Adaptive control Azimuth Control stability Control theory Controllers Couplings Disturbances Feedback control Flexibility Friction Mathematical model Mathematical models Nonlinear control Nonlinearity Robust control Servocontrol Servomotors Stability analysis Systems stability Tank servo systems Uncertainty |
title | Nonlinear Adaptive Robust Precision Pointing Control of Tank Servo Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T10%3A42%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20Adaptive%20Robust%20Precision%20Pointing%20Control%20of%20Tank%20Servo%20Systems&rft.jtitle=IEEE%20access&rft.au=Yuan,%20Shusen&rft.date=2021&rft.volume=9&rft.spage=23385&rft.epage=23397&rft.pages=23385-23397&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3054178&rft_dat=%3Cproquest_cross%3E2488746138%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2488746138&rft_id=info:pmid/&rft_ieee_id=9334984&rft_doaj_id=oai_doaj_org_article_b75fb6e22d684f16a31094d6d99b9fab&rfr_iscdi=true |