Nonlinear Adaptive Robust Precision Pointing Control of Tank Servo Systems

This paper focuses on the high performance pointing control of tank servo systems with parametric uncertainties and uncertain nonlinearities including nonlinear friction, backlash and structural flexibility. A comprehensive dynamic nonlinear mathematical model of the two-DOF tank servo system is est...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021, Vol.9, p.23385-23397
Hauptverfasser: Yuan, Shusen, Deng, Wenxiang, Ge, Yaowen, Yao, Jianyong, Yang, Guolai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23397
container_issue
container_start_page 23385
container_title IEEE access
container_volume 9
creator Yuan, Shusen
Deng, Wenxiang
Ge, Yaowen
Yao, Jianyong
Yang, Guolai
description This paper focuses on the high performance pointing control of tank servo systems with parametric uncertainties and uncertain nonlinearities including nonlinear friction, backlash and structural flexibility. A comprehensive dynamic nonlinear mathematical model of the two-DOF tank servo system is established. Specifically, to accurately describe the nonlinear friction characteristics in actual systems, a continuous friction model is employed. Moreover, a hybrid nonlinear model combining structural flexibility and transmission backlash is constructed to characterize the nonlinear characteristics of the backlash and flexible coupling between the input and output shafts of the drive end for the tank servo system. By using the backstepping method, a nonlinear adaptive robust controller is presented. In the controller, the adaptive law is compounded to dispose of parametric uncertainties and a well-designed continuous nonlinear robust control law is developed for the purpose of coping with unmodeled disturbances. The closed-loop system stability analysis indicates that the presented controller achieves an asymptotic tracking performance with parametric uncertainties and ensures the robustness against unmodeled disturbances theoretically. The effectiveness of the proposed control strategy is verified by a large number of comparative simulation results.
doi_str_mv 10.1109/ACCESS.2021.3054178
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2488746138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9334984</ieee_id><doaj_id>oai_doaj_org_article_b75fb6e22d684f16a31094d6d99b9fab</doaj_id><sourcerecordid>2488746138</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-b70ba9dce9d52074e38c93cd4851e535667eb38b74e5e0a3630852c8278ccbef3</originalsourceid><addsrcrecordid>eNpNUU1LAzEQXURBqf0FvQQ8t-Z7k2NZ_KiIFlvPIcnOSmrd1GRb8N-7dUWcywxv5r0Z5hXFhOAZIVhfz6vqZrWaUUzJjGHBSalOigtKpJ4yweTpv_q8GOe8wX2oHhLlRfHwFNttaMEmNK_trgsHQC_R7XOHlgl8yCG2aBlD24X2DVWx7VLcotigtW3f0QrSIaLVV-7gI18WZ43dZhj_5lHxenuzru6nj893i2r-OPUcq27qSuysrj3oWlBccmDKa-ZrrgQBwYSUJTimXN8RgC2TDCtBvaKl8t5Bw0bFYtCto92YXQofNn2ZaIP5AWJ6MzZ1wW_BuFI0TgKltVS8IdKy_mG8lrXWTjfW9VpXg9Yuxc895M5s4j61_fmGcqVKLglT_RQbpnyKOSdo_rYSbI4emMEDc_TA_HrQsyYDKwDAH0MzxrXi7Bv8doH-</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2488746138</pqid></control><display><type>article</type><title>Nonlinear Adaptive Robust Precision Pointing Control of Tank Servo Systems</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Directory of Open Access Journals</source><source>IEEE Xplore Open Access Journals</source><creator>Yuan, Shusen ; Deng, Wenxiang ; Ge, Yaowen ; Yao, Jianyong ; Yang, Guolai</creator><creatorcontrib>Yuan, Shusen ; Deng, Wenxiang ; Ge, Yaowen ; Yao, Jianyong ; Yang, Guolai</creatorcontrib><description>This paper focuses on the high performance pointing control of tank servo systems with parametric uncertainties and uncertain nonlinearities including nonlinear friction, backlash and structural flexibility. A comprehensive dynamic nonlinear mathematical model of the two-DOF tank servo system is established. Specifically, to accurately describe the nonlinear friction characteristics in actual systems, a continuous friction model is employed. Moreover, a hybrid nonlinear model combining structural flexibility and transmission backlash is constructed to characterize the nonlinear characteristics of the backlash and flexible coupling between the input and output shafts of the drive end for the tank servo system. By using the backstepping method, a nonlinear adaptive robust controller is presented. In the controller, the adaptive law is compounded to dispose of parametric uncertainties and a well-designed continuous nonlinear robust control law is developed for the purpose of coping with unmodeled disturbances. The closed-loop system stability analysis indicates that the presented controller achieves an asymptotic tracking performance with parametric uncertainties and ensures the robustness against unmodeled disturbances theoretically. The effectiveness of the proposed control strategy is verified by a large number of comparative simulation results.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3054178</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptation models ; Adaptive control ; Azimuth ; Control stability ; Control theory ; Controllers ; Couplings ; Disturbances ; Feedback control ; Flexibility ; Friction ; Mathematical model ; Mathematical models ; Nonlinear control ; Nonlinearity ; Robust control ; Servocontrol ; Servomotors ; Stability analysis ; Systems stability ; Tank servo systems ; Uncertainty</subject><ispartof>IEEE access, 2021, Vol.9, p.23385-23397</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-b70ba9dce9d52074e38c93cd4851e535667eb38b74e5e0a3630852c8278ccbef3</citedby><cites>FETCH-LOGICAL-c408t-b70ba9dce9d52074e38c93cd4851e535667eb38b74e5e0a3630852c8278ccbef3</cites><orcidid>0000-0003-2206-1392 ; 0000-0002-8391-6043</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9334984$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Yuan, Shusen</creatorcontrib><creatorcontrib>Deng, Wenxiang</creatorcontrib><creatorcontrib>Ge, Yaowen</creatorcontrib><creatorcontrib>Yao, Jianyong</creatorcontrib><creatorcontrib>Yang, Guolai</creatorcontrib><title>Nonlinear Adaptive Robust Precision Pointing Control of Tank Servo Systems</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper focuses on the high performance pointing control of tank servo systems with parametric uncertainties and uncertain nonlinearities including nonlinear friction, backlash and structural flexibility. A comprehensive dynamic nonlinear mathematical model of the two-DOF tank servo system is established. Specifically, to accurately describe the nonlinear friction characteristics in actual systems, a continuous friction model is employed. Moreover, a hybrid nonlinear model combining structural flexibility and transmission backlash is constructed to characterize the nonlinear characteristics of the backlash and flexible coupling between the input and output shafts of the drive end for the tank servo system. By using the backstepping method, a nonlinear adaptive robust controller is presented. In the controller, the adaptive law is compounded to dispose of parametric uncertainties and a well-designed continuous nonlinear robust control law is developed for the purpose of coping with unmodeled disturbances. The closed-loop system stability analysis indicates that the presented controller achieves an asymptotic tracking performance with parametric uncertainties and ensures the robustness against unmodeled disturbances theoretically. The effectiveness of the proposed control strategy is verified by a large number of comparative simulation results.</description><subject>Adaptation models</subject><subject>Adaptive control</subject><subject>Azimuth</subject><subject>Control stability</subject><subject>Control theory</subject><subject>Controllers</subject><subject>Couplings</subject><subject>Disturbances</subject><subject>Feedback control</subject><subject>Flexibility</subject><subject>Friction</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Nonlinear control</subject><subject>Nonlinearity</subject><subject>Robust control</subject><subject>Servocontrol</subject><subject>Servomotors</subject><subject>Stability analysis</subject><subject>Systems stability</subject><subject>Tank servo systems</subject><subject>Uncertainty</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LAzEQXURBqf0FvQQ8t-Z7k2NZ_KiIFlvPIcnOSmrd1GRb8N-7dUWcywxv5r0Z5hXFhOAZIVhfz6vqZrWaUUzJjGHBSalOigtKpJ4yweTpv_q8GOe8wX2oHhLlRfHwFNttaMEmNK_trgsHQC_R7XOHlgl8yCG2aBlD24X2DVWx7VLcotigtW3f0QrSIaLVV-7gI18WZ43dZhj_5lHxenuzru6nj893i2r-OPUcq27qSuysrj3oWlBccmDKa-ZrrgQBwYSUJTimXN8RgC2TDCtBvaKl8t5Bw0bFYtCto92YXQofNn2ZaIP5AWJ6MzZ1wW_BuFI0TgKltVS8IdKy_mG8lrXWTjfW9VpXg9Yuxc895M5s4j61_fmGcqVKLglT_RQbpnyKOSdo_rYSbI4emMEDc_TA_HrQsyYDKwDAH0MzxrXi7Bv8doH-</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Yuan, Shusen</creator><creator>Deng, Wenxiang</creator><creator>Ge, Yaowen</creator><creator>Yao, Jianyong</creator><creator>Yang, Guolai</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2206-1392</orcidid><orcidid>https://orcid.org/0000-0002-8391-6043</orcidid></search><sort><creationdate>2021</creationdate><title>Nonlinear Adaptive Robust Precision Pointing Control of Tank Servo Systems</title><author>Yuan, Shusen ; Deng, Wenxiang ; Ge, Yaowen ; Yao, Jianyong ; Yang, Guolai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-b70ba9dce9d52074e38c93cd4851e535667eb38b74e5e0a3630852c8278ccbef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptation models</topic><topic>Adaptive control</topic><topic>Azimuth</topic><topic>Control stability</topic><topic>Control theory</topic><topic>Controllers</topic><topic>Couplings</topic><topic>Disturbances</topic><topic>Feedback control</topic><topic>Flexibility</topic><topic>Friction</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Nonlinear control</topic><topic>Nonlinearity</topic><topic>Robust control</topic><topic>Servocontrol</topic><topic>Servomotors</topic><topic>Stability analysis</topic><topic>Systems stability</topic><topic>Tank servo systems</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Shusen</creatorcontrib><creatorcontrib>Deng, Wenxiang</creatorcontrib><creatorcontrib>Ge, Yaowen</creatorcontrib><creatorcontrib>Yao, Jianyong</creatorcontrib><creatorcontrib>Yang, Guolai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Shusen</au><au>Deng, Wenxiang</au><au>Ge, Yaowen</au><au>Yao, Jianyong</au><au>Yang, Guolai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear Adaptive Robust Precision Pointing Control of Tank Servo Systems</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>23385</spage><epage>23397</epage><pages>23385-23397</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper focuses on the high performance pointing control of tank servo systems with parametric uncertainties and uncertain nonlinearities including nonlinear friction, backlash and structural flexibility. A comprehensive dynamic nonlinear mathematical model of the two-DOF tank servo system is established. Specifically, to accurately describe the nonlinear friction characteristics in actual systems, a continuous friction model is employed. Moreover, a hybrid nonlinear model combining structural flexibility and transmission backlash is constructed to characterize the nonlinear characteristics of the backlash and flexible coupling between the input and output shafts of the drive end for the tank servo system. By using the backstepping method, a nonlinear adaptive robust controller is presented. In the controller, the adaptive law is compounded to dispose of parametric uncertainties and a well-designed continuous nonlinear robust control law is developed for the purpose of coping with unmodeled disturbances. The closed-loop system stability analysis indicates that the presented controller achieves an asymptotic tracking performance with parametric uncertainties and ensures the robustness against unmodeled disturbances theoretically. The effectiveness of the proposed control strategy is verified by a large number of comparative simulation results.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3054178</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2206-1392</orcidid><orcidid>https://orcid.org/0000-0002-8391-6043</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021, Vol.9, p.23385-23397
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2488746138
source EZB-FREE-00999 freely available EZB journals; Directory of Open Access Journals; IEEE Xplore Open Access Journals
subjects Adaptation models
Adaptive control
Azimuth
Control stability
Control theory
Controllers
Couplings
Disturbances
Feedback control
Flexibility
Friction
Mathematical model
Mathematical models
Nonlinear control
Nonlinearity
Robust control
Servocontrol
Servomotors
Stability analysis
Systems stability
Tank servo systems
Uncertainty
title Nonlinear Adaptive Robust Precision Pointing Control of Tank Servo Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T10%3A42%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20Adaptive%20Robust%20Precision%20Pointing%20Control%20of%20Tank%20Servo%20Systems&rft.jtitle=IEEE%20access&rft.au=Yuan,%20Shusen&rft.date=2021&rft.volume=9&rft.spage=23385&rft.epage=23397&rft.pages=23385-23397&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3054178&rft_dat=%3Cproquest_cross%3E2488746138%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2488746138&rft_id=info:pmid/&rft_ieee_id=9334984&rft_doaj_id=oai_doaj_org_article_b75fb6e22d684f16a31094d6d99b9fab&rfr_iscdi=true