Nonlinear Adaptive Robust Precision Pointing Control of Tank Servo Systems
This paper focuses on the high performance pointing control of tank servo systems with parametric uncertainties and uncertain nonlinearities including nonlinear friction, backlash and structural flexibility. A comprehensive dynamic nonlinear mathematical model of the two-DOF tank servo system is est...
Gespeichert in:
Veröffentlicht in: | IEEE access 2021, Vol.9, p.23385-23397 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper focuses on the high performance pointing control of tank servo systems with parametric uncertainties and uncertain nonlinearities including nonlinear friction, backlash and structural flexibility. A comprehensive dynamic nonlinear mathematical model of the two-DOF tank servo system is established. Specifically, to accurately describe the nonlinear friction characteristics in actual systems, a continuous friction model is employed. Moreover, a hybrid nonlinear model combining structural flexibility and transmission backlash is constructed to characterize the nonlinear characteristics of the backlash and flexible coupling between the input and output shafts of the drive end for the tank servo system. By using the backstepping method, a nonlinear adaptive robust controller is presented. In the controller, the adaptive law is compounded to dispose of parametric uncertainties and a well-designed continuous nonlinear robust control law is developed for the purpose of coping with unmodeled disturbances. The closed-loop system stability analysis indicates that the presented controller achieves an asymptotic tracking performance with parametric uncertainties and ensures the robustness against unmodeled disturbances theoretically. The effectiveness of the proposed control strategy is verified by a large number of comparative simulation results. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2021.3054178 |