There are at most finitely many singular moduli that are S-units

We show that for every finite set of prime numbers S, there are at most finitely many singular moduli that are S-units. The key new ingredient is that for every prime number p, singular moduli are p-adically disperse. We prove analogous results for the Weber modular functions, the lambda invariants...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-09
Hauptverfasser: Herrero, Sebastián, Menares, Ricardo, Rivera-Letelier, Juan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that for every finite set of prime numbers S, there are at most finitely many singular moduli that are S-units. The key new ingredient is that for every prime number p, singular moduli are p-adically disperse. We prove analogous results for the Weber modular functions, the lambda invariants and the McKay-Thompson series associated to the elements of the monster group. Finally, we also obtain that a modular function that specializes to infinitely many algebraic units at quadratic imaginary numbers must be a weak modular unit.
ISSN:2331-8422