The molar mass of a new enriched silicon crystal: maintaining the realization and dissemination of the kilogram and mole in the new SI

The local distribution of the isotopic composition and molar mass M of a new silicon crystal (Si28-24Pr11) highly enriched in the 28Si isotope is reported, with focus on the experimental methods as well as on the associated uncertainties. The crystal was used in 2018 for the production of two additi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European physical journal. Applied physics 2019-11, Vol.88 (2), p.20904
Hauptverfasser: Pramann, Axel, Rienitz, Olaf
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The local distribution of the isotopic composition and molar mass M of a new silicon crystal (Si28-24Pr11) highly enriched in the 28Si isotope is reported, with focus on the experimental methods as well as on the associated uncertainties. The crystal was used in 2018 for the production of two additional silicon spheres for the realization and verification of the Avogadro constant NA using the “X-ray-crystal-density (XRCD) method” which is a primary method for the dissemination of the revised SI units mole and kilogram. 17 subsamples have been investigated (from five different axial and in several radial positions) by isotope ratio mass spectrometry using a multicollector-inductively coupled plasma mass spectrometer (MC-ICP-MS). The average molar mass of the crystal is M = 27.976 933 787(77) g/mol with a relative combined uncertainty uc,rel(M) = 2.7 × 10−9. The mean amount-of-substance fraction of 28Si is x(28Si) = 0.999 993 104 (66) mol/mol indicating that this crystal has the highest enrichment in this isotope which has ever been used for the determination of NA. No local variations in M and x(iSi) (i = 28, 29, and 30) could be identified due to material properties. The results are compared with those from two previous enriched crystals.
ISSN:1286-0042
1286-0050
DOI:10.1051/epjap/2019190284