Probing the anomeric effect and mechanism of isomerization of oxazinane rings by DFT methods
Mechanistic studies of the thermal amine-promoted isomerization of oxazinane rings by DFT methods showed that the isomerization proceeds through abstraction of the C-3 hydrogen atom by the amine nitrogen atom followed by its re-recruitment from C-3 that helps the oxazinane ring to avoid breaking, le...
Gespeichert in:
Veröffentlicht in: | Organic & biomolecular chemistry 2021-02, Vol.19 (5), p.166-182 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Mechanistic studies of the thermal amine-promoted isomerization of oxazinane rings by DFT methods showed that the isomerization proceeds through abstraction of the C-3 hydrogen atom by the amine nitrogen atom followed by its re-recruitment from C-3 that helps the oxazinane ring to avoid breaking, leading to the same or an isomeric conformer. Calculations also provided evidence that steric effects are responsible for the breaking of the O-N bond in the transition state of the thermal amine-promoted transformations of oxazinane rings, leading to the transformation of the 6-membered ring to a 5-membered ring. Extensive computational studies of the origin of the anomeric effect in the di-substituted oxazinane rings, bearing the EtO substituent at C-6 and CO
2
Et at C-3, and a series of analogous tetrahydro-2
H
-pyran ring conformers, revealed that the conformational preferences in both series of compounds are tuned by the balance of non-covalent (weak vDW, dipole-dipole, electrostatic forces, hydrogen bonding) steric effects and hyperconjugative interactions.
Oxazinane rings can undergo isomerization or transformation to 5-membered rings tuned by the anomeric effect. |
---|---|
ISSN: | 1477-0520 1477-0539 |
DOI: | 10.1039/d0ob02453h |