New quantum codes from constacyclic codes over a non-chain ring
Let p be a prime of the form p = m t + 1 , where integers t ≥ 1 , m ≥ 2 and R m = F p [ u ] / ⟨ u m - 1 ⟩ . Thus, R m is a finite commutative non-chain ring. For a given unit λ ∈ R m , we study λ -constacyclic codes of length n over R m . The necessary and sufficient conditions for these codes to co...
Gespeichert in:
Veröffentlicht in: | Quantum information processing 2021-02, Vol.20 (2), Article 60 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
p
be a prime of the form
p
=
m
t
+
1
, where integers
t
≥
1
,
m
≥
2
and
R
m
=
F
p
[
u
]
/
⟨
u
m
-
1
⟩
.
Thus,
R
m
is a finite commutative non-chain ring. For a given unit
λ
∈
R
m
, we study
λ
-constacyclic codes of length
n
over
R
m
. The necessary and sufficient conditions for these codes to contain their Euclidean duals are determined. As an application from dual-containing
λ
-constacyclic codes over
R
m
, for
m
=
2
,
3
,
4
, we obtain many new quantum codes that improve on the known existing quantum codes. |
---|---|
ISSN: | 1570-0755 1573-1332 |
DOI: | 10.1007/s11128-020-02977-y |