Effect of undulating blades on highly loaded compressor cascade performance

Humpback whale’s flipper with leading-edge tubercles has been attracting aerodynamic and hydrodynamic researchers’ attentions by its stall-delayed characteristics. Inspired by this, the undulating configuration is used in a highly loaded compressor cascade as a new type of passive flow control techn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part A, Journal of power and energy Journal of power and energy, 2021-02, Vol.235 (1), p.17-28
Hauptverfasser: Su, Lirong, Qiang, Xiaoqing, Zheng, Tan, Teng, Jinfang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Humpback whale’s flipper with leading-edge tubercles has been attracting aerodynamic and hydrodynamic researchers’ attentions by its stall-delayed characteristics. Inspired by this, the undulating configuration is used in a highly loaded compressor cascade as a new type of passive flow control technique. A new model of undulating compressor blade is studied in this paper. To investigate the effect of the undulating configuration on cascade performance without the impact of endwall, steady Reynolds-averaged Navier–Stokes simulations of infinite-span cascades are carried out with and without undulations at an inlet Mach number of 0.5. A parametric study is performed to conclude that, with a suitable wavelength, the undulating blade could achieve a rise in diffusion capacity, accompanied by 12.9% reduction in total pressure loss coefficient at a post-stall incidence angle of 8°, whereas it produces negligible impact in cascade performance at 0° incidence angle. Flow visualization further reveals that wavelength is a crucial parameter, determining the spanwise space for the formation of streamwise vortices. Undulating blades could produce positive effects with maximum magnitude when the counter-rotating streamwise vortices take dominant position along span with an appropriate size.
ISSN:0957-6509
2041-2967
DOI:10.1177/0957650920907823