Self-duality of the lattice of transfer systems via weak factorization systems
For a finite group \(G\), \(G\)-transfer systems are combinatorial objects which encode the homotopy category of \(G\)-\(N_\infty\) operads, whose algebras in \(G\)-spectra are \(E_\infty\) \(G\)-spectra with a specified collection of multiplicative norms. For \(G\) finite Abelian, we demonstrate a...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-06 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a finite group \(G\), \(G\)-transfer systems are combinatorial objects which encode the homotopy category of \(G\)-\(N_\infty\) operads, whose algebras in \(G\)-spectra are \(E_\infty\) \(G\)-spectra with a specified collection of multiplicative norms. For \(G\) finite Abelian, we demonstrate a correspondence between \(G\)-transfer systems and weak factorization systems on the poset category of subgroups of \(G\). This induces a self-duality on the lattice of \(G\)-transfer systems. |
---|---|
ISSN: | 2331-8422 |