Etingof’s conjecture for quantized quiver varieties
We compute the number of finite dimensional irreducible modules for the algebras quantizing Nakajima quiver varieties. We get a lower bound for all quivers and vectors of framing. We provide an exact count in the case when the quiver is of finite type or is of affine type and the framing is the coor...
Gespeichert in:
Veröffentlicht in: | Inventiones mathematicae 2021-03, Vol.223 (3), p.1097-1226 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We compute the number of finite dimensional irreducible modules for the algebras quantizing Nakajima quiver varieties. We get a lower bound for all quivers and vectors of framing. We provide an exact count in the case when the quiver is of finite type or is of affine type and the framing is the coordinate vector at the extending vertex. The latter case precisely covers Etingof’s conjecture on the number of finite dimensional irreducible representations for Symplectic reflection algebras associated to wreath-product groups. We use several different techniques, the two principal ones are categorical Kac–Moody actions and wall-crossing functors. |
---|---|
ISSN: | 0020-9910 1432-1297 |
DOI: | 10.1007/s00222-020-01007-z |