Differentiating Solutes with Precise Nanofiltration for Next Generation Environmental Separations: A Review
Selective removal or enrichment of targeted solutes including micropollutants, valuable elements, and mineral scalants from complex aqueous matrices is both challenging and pivotal to the success of water purification and resource recovery from unconventional water resources. Membrane separation wit...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2021-02, Vol.55 (3), p.1359-1376 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Selective removal or enrichment of targeted solutes including micropollutants, valuable elements, and mineral scalants from complex aqueous matrices is both challenging and pivotal to the success of water purification and resource recovery from unconventional water resources. Membrane separation with precision at the subnanometer or even subangstrom scale is of paramount importance to address those challenges via enabling “fit-for-purpose” water and wastewater treatment. So far, researchers have attempted to develop novel membrane materials with precise and tailored selectivity by tuning membrane structure and chemistry. In this critical review, we first present the environmental challenges and opportunities that necessitate improved solute–solute selectivity in membrane separation. We then discuss the mechanisms and desired membrane properties required for better membrane selectivity. On the basis of the most recent progress reported in the literature, we examine the key principles of material design and fabrication, which create membranes with enhanced and more targeted selectivity. We highlight the important roles of surface engineering, nanotechnology, and molecular-level design in improving membrane selectivity. Finally, we discuss the challenges and prospects of highly selective NF membranes for practical environmental applications, identifying knowledge gaps that will guide future research to promote environmental sustainability through more precise and tunable membrane separation. |
---|---|
ISSN: | 0013-936X 1520-5851 |
DOI: | 10.1021/acs.est.0c04593 |